Experimental results of various indicators for model performance evaluation
Model | NSTEMI | UA | ||||||
Accuracy | Precision | Recall | F-1 score | Accuracy | Precision | Recall | F-1 score | |
SVM | 0.91±0.015* | 0.90±0.002† | 0.92±0.012† | 0.94±0.015* | 0.90±0.003* | 0.89±0.002* | 0.73±0.011‡ | 0.88 ±0.013* |
XGB | 0.95±0.014* | 0.94±0.011* | 0.98±0.003* | 0.96±0.007* | 0.93±0.017* | 0.96±0.008* | 0.82±0.014* | 0.89±0.016* |
RF | 0.88±0.009* | 0.87±0.012‡ | 0.95±0.003* | 0.93±0.003* | 0.81±0.007* | 0.94±0.005* | 0.58±0.015* | 0.72±0.008‡ |
NB | 0.61±0.009* | 0.80±0.003‡ | 0.63±0.002* | 0.71±0.003‡ | 0.71±0.008* | 0.67±0.006‡ | 0.54±0.013* | 0.42±0.006* |
GBM | 0.91±0.013*§ | 0.90±0.002†§ | 0.89±0.013†§ | 0.84±0.014†§ | 0.90±0.011*§ | 0.88±0.006*§ | 0.68±0.015*§ | 0.79±0.018†§ |
LR | 0.74±0.016 | 0.81±0.015 | 0.85±0.012 | 0.75±0.009 | 0.62±0.014 | 0.63±0.017 | 0.73±0.012 | 0.69±0.013 |
*Compared with the LR model, p<0.01.
†Compared with the LR model, p<0.05.
‡Compared with the LR model, p>0.05.
§Compared with the XGB model, p<0.05.
GBM, gradient boosting machines; LR, logistic regression; NB, naïve Bayesian; NSTEMI, non-ST-elevation myocardial infarction; RF, random forest; SVM, support vector machine; UA, unstable angina pectoris; XGBoost, extreme gradient boosting.