
Gut microbiota, obesity and diabetes
Elaine Patterson,1,2 Paul M Ryan,2,3 John F Cryan,1,4 Timothy G Dinan,1,5

R Paul Ross,1,6 Gerald F Fitzgerald,1,3 Catherine Stanton1,2

1APC Microbiome Institute,
University College Cork, Co.
Cork, Ireland
2Food Biosciences Department,
Teagasc Food Research Centre,
Fermoy, Co. Cork, Ireland
3School of Microbiology,
University College Cork,
Co. Cork, Ireland
4Department of Anatomy and
Neuroscience, University
College Cork, Co. Cork, Ireland
5Department of Psychiatry and
Neurobehavioural Science,
University College Cork,
Co. Cork, Ireland
6College of Science,
Engineering and Food Science,
University College Cork, Co.
Cork, Ireland

Correspondence to
Professor Catherine Stanton,
Food Biosciences Department,
Teagasc Food Research Centre,
Moorepark, Fermoy, Co.
Cork, Ireland;
catherine.stanton@teagasc.ie

Received 19 August 2015
Revised 25 December 2015
Accepted 28 January 2016
Published Online First
24 February 2016

To cite: Patterson E,
Ryan PM, Cryan JF, et al.
Postgrad Med J
2016;92:286–300.

ABSTRACT
The central role of the intestinal microbiota in the
progression and, equally, prevention of metabolic
dysfunction is becoming abundantly apparent. The
symbiotic relationship between intestinal microbiota and
host ensures appropriate development of the metabolic
system in humans. However, disturbances in composition
and, in turn, functionality of the intestinal microbiota
can disrupt gut barrier function, a trip switch for
metabolic endotoxemia. This low-grade chronic
inflammation, brought about by the influx of
inflammatory bacterial fragments into circulation through
a malfunctioning gut barrier, has considerable knock-on
effects for host adiposity and insulin resistance.
Conversely, recent evidence suggests that there are
certain bacterial species that may interact with host
metabolism through metabolite-mediated stimulation of
enteric hormones and other systems outside of the
gastrointestinal tract, such as the endocannabinoid
system. When the abundance of these keystone species
begins to decline, we see a collapse of the symbiosis,
reflected in a deterioration of host metabolic health. This
review will investigate the intricate axis between the
microbiota and host metabolism, while also addressing
the promising and novel field of probiotics as metabolic
therapies.

INTRODUCTION
The Barker hypothesis, in which long-term meta-
bolic outcomes are pre-programmed in the womb,
has held centre stage for decades and may still
remain at the heart of metabolic syndrome patho-
genesis.1 2 However, the gut microbiota, also
referred to as the hidden organ, or the organ
within an organ, harbours tens of trillions of micro-
organisms residing in the human intestine, which
are arguably as important to metabolic health as
the very organs that support them. Over the last
few decades, a myriad of original research publica-
tions and comprehensive review articles make it
impossible to ignore the contribution of the gut
microbiota towards health and disease. It is
believed that the 1–2 kg of microorganisms in the
human gut contain >150-fold more genes than the
human genome itself, a concept that attracts
researchers from gastroenterology, physiology and
microbiology and one that demolishes the notion
that the gut microbiota will ever again be described
as a ‘forgotten organ’.
Although a very recent study has supported the

possibility that the infant is first seeded with bac-
teria in utero from the maternal placental micro-
biome,3 the neonatal intestinal tract is rapidly
colonised by bacteria from the mother and sur-
rounding environment following birth. Of course,
the delivery method—natural versus caesarean

section—is a strong determinant of the first real
microbial colonisers of the neonatal intestinal
tract.4 Numerous publications have described clear
differences in the gut microbiota composition
between babies born via caesarean section versus
natural birth5 6 and for breast-fed versus
formula-fed babies.7–10 The gut microbiota con-
tinues to develop throughout childhood and ado-
lescence and becomes more stable as it is generally
assumed that the gut microbiota after around
3 years of age closely resembles that of an
adult.11 12

The gastrointestinal (GI) tract of a healthy adult
hosts around 102 microbial cells within the highly
acidic environment of the stomach, into the duode-
num and jejunum. The distal ileum contains
around 107–108 microbial cells with the largest
proportion of microbes finally residing in the
colon, containing around 1011–1012 microbial
cells. Difficulties arise in culturing the microbiota
from this highly anaerobic environment, with only
about 10–50% successfully culturable in the labora-
tory.13 It is only over the last few decades with the
emergence of culture-independent sequencing tech-
nologies that we have gained such a vast insight
into the compositional changes that exist between
individuals in both healthy and diseased states.
However, while compositional studies generate a
large volume of data, they fail to provide direct
information regarding the microbial viability or the
functional potential of the populations present and
so the knowledge is somewhat limited in these
aspects.14 As such, much of our understanding of
the role of the gut microbiota and individual
microbes comes from the use of germfree animals,
that is, those born and reared without exposure to
microorganisms and microbial supplementation
studies. Germfree animals have highlighted the
importance of a gut microbiota in influencing many
aspects of host biology, including metabolism,15 16

social development17 and immunity.18 For example,
germfree animals show defects in both the develop-
ment of the immune system and in immune
responses. They show extensive defects in the
development of gut-associated lymphoid tissue and
cell-turnover rates of intestinal epithelial cells and
have fewer and smaller Peyer’s patches and mesen-
teric lymph nodes compared with animals housed
under specific pathogen-free (SPF) conditions.19–22

It is now fully appreciated that host–microbe inter-
actions can together co-metabolise dietary compo-
nents to produce a large array of signalling
molecules that develop ‘intelligent communication
systems’ in the body with beneficial impacts on
health. ‘Pharmabiotics’, that is, microbially pro-
duced bioactive metabolites, such as short-chain
fatty acids, conjugated fatty acids,
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exopolysaccharides and neuroactive metabolites such as
γ-aminobutyric acid (GABA) and serotonin, confer health bene-
fits on the host.23–25 Thus, host–microbe interactions are crucial
for optimum health.

While culture-independent analyses have broadened our
understanding of gut microbiota composition and germfree
studies have helped determine the role of gut microbes in
health, it is now apparent that an individual’s microbial signa-
ture is not only unique but could be a predetermining factor for
disease risk. Recent literature has linked gut microbiota compos-
ition with almost every disease known to man, from GI dis-
eases,26–29 to obesity,30–33 diabetes,34–38 cancer39–42 and even
neurological and neurodegenerative disorders such as depres-
sion,43 44 autism,45–48 anxiety49 50 and Parkinson’s disease.51

The demands for a clear link between the gut microbiota and
disease have never been so high, and so advances in the devel-
opment of methods used to analyse gene expression (metatran-
scriptomics), protein products (metaproteomics) and metabolic
profiles (metabolomics) are proving crucial.14

This review will summarise the most relevant literature to
date linking the gut microbiota with diet, obesity and diabetes
and highlights some specific gut microbial compositional altera-
tions that have been described as either potentially causal or
protective towards metabolic disease.

DIET AND OBESITY
Diet shapes the gut microbiota
Before addressing the involvement of the gut microbiota
towards shaping obesity and associated metabolic disorders, it is
appropriate to first briefly discuss some recent literature that
describes diet as a dominant contributing factor to gut microbial
composition. Indeed, dietary factors have a profound impact on
altering the gut microbiota of animals52–58 and humans.31 59–61

This implies that health beneficial alterations to gut microbiota
composition through dietary-related changes have rapidly
become attractive mechanisms through which we may prevent
or alleviate diseases appearing to arise from an altered microbial
composition. Dietary patterns are associated with distinct com-
binations of bacteria in the intestine, also called enterotypes.62

Considering that the role of the gut microbiota is to ferment
dietary substrates, complex diets can provide a range of growth-
promoting and growth-inhibiting factors for specific phylo-
types.63 The difficulty arises in deciphering which precise
dietary constituents specifically promote the growth of health
beneficial gut microbiota that maximise the production of phar-
mabiotics.23 Thus, the identification of dietary patterns or spe-
cific foods that increase bacterial diversity and promote the
growth of beneficial bacteria that produce high levels of bio-
active metabolites, is the ultimate research goal.

Western-style diets or various combinations of high fat (HF)
diets, such as HF-high-sucrose and HF-low-plant-polysaccharide
have profound effects on gut microbiota composition of animals
and humans, often with conflicting results. Such
HF-dietary-related gut microbial alterations often correlate with
deleterious metabolic health effects.38 60 64 For example, one
recent study in overweight and obese human subjects demon-
strated the effects of three different dietary regimens on gut
microbiota composition and health outcomes.65 They found
that subjects consuming what was considered to be the least
healthiest dietary regimen, characterised by the high consump-
tion of confectionary and sugary drinks and the lowest con-
sumption of fruits, yoghurt and water, had a significantly
greater inflammatory profile compared with those consuming
the healthiest dietary regimen, characterised by the lowest

consumption of confectionary and sugary drinks and the highest
consumption of fruits, yoghurts and soups.65 Interestingly,
although the data did not highlight any significant changes to
the seven gut microbial groups studied between the groups, the
healthiest dietary regimen was associated with the highest
microbial gene cluster or the highest microbial diversity/rich-
ness.65 This is indeed a significant finding as the importance of
microbial diversity has previously been identified as a significant
factor influenced by diet and exercise66 and which is also
decreased during overweight and obese disease states.67 Fat type
is also a strong determinant of inflammation and gut microbiota
composition. Diets rich in saturated fat (lard) are associated
with increased white adipose tissue (WAT) inflammation and
metabolic disease, while diets rich in polyunsaturated fatty acids
(fish oil) can counteract inflammation to promote a lean and
metabolically healthy phenotype.68 69 In fact, mice fed fish oil
have increased levels of taxa from the genera Lactobacillus and
Akkermansia (discussed in more detail later) while mice fed lard
have increased levels of taxa related to Bilophila.69 Bilophila
wadsworthia has previously been shown to exacerbate colitis in
genetically susceptible models.70 While previous studies have
shown that microbial factors can directly contribute to WAT
inflammation through Toll-like receptor (TLR) signalling,71 72

dietary and host factors are also strong TLR ligands and so
whether gut microbial factors initiate TLR signalling with an
effect on health is uncertain. Caesar et al proved that
lard-induced WAT inflammation is mediated through gut micro-
bial activation of TLR4. Trif−/− and Myd88−/− (adaptor pro-
teins necessary for interpreting TLR signalling) mice were
protected against lard-induced WAT inflammation and impaired
insulin sensitivity. Furthermore, the authors discovered that
serum lipopolysaccharide (LPS) levels were higher in mice fed
lard compared with those fed fish oil, indicating that microbial
factors are present in the periphery that affect WAT inflamma-
tion. The impact of gut microbial factors on lard-induced WAT
inflammation was further elucidated by comparing the effects of
lard and fish oil in conventionally raised and germfree mice.
These results demonstrated an adiposity-independent link
between the gut microbiota and WAT inflammation, which led
the authors to conclude that microbially derived products act as
mediators of inflammation through TLR signalling. This high-
lights the gut microbiota as independent factors aggravating
inflammation following saturated fat feeding.69

The data of Clarke et al66 demonstrate the importance of
dietary variation and protein consumption, coupled with exer-
cise, towards shaping gut microbial composition. In this study,
protein consumption positively correlated with high microbial
diversity (22 distinct phyla) and athletes with a low body mass
index had significantly higher levels of Akkermansia, previously
shown to inversely correlate with obesity in both mice and
humans.73 74 These results highlight the importance of dietary
macronutrients and exercise on positively shaping the gut micro-
biota composition. Fascinating discoveries have been made from
the recently development multi-taxon Insertion Sequencing
(INSeq) method, which monitors the genetic factors that enable
members of the gut microbial community to flourish within this
niche.75 This approach can be used to understand the mechan-
isms (gene-level characterisation) that determine gut microbial
fitness and perturbation through diet, disease and clinical treat-
ment. Using this approach, Wu et al75 revealed a strain-specific
and diet-specific fitness determinant (arbinoxylan utilisation
locus) in Bacteroides cellulosilyticus WH2 that is critical for the
organism’s fitness during HF/simple-sugar feeding. What’s
more, supplementation of drinking water with arbinoxylan
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(cereal-derived hemicellulose) in mice consuming this diet
selectively increased the abundance of B. cellulosilyticus.75

Thus, by increasing our understanding of how host genotypic
and phenotypic factors affect gut microbial niches, multi-taxon
INSeq can provide gene-level characterisation of species and
strain-specific fitness determinants that enable therapeutic inter-
ventions (eg, prebiotic supplementation) to manipulate gut
microbial community structure and function in health.

It is, however, often very difficult to determine the extent by
which dietary factors affect gut microbiota composition, aside
from genetic factors. While we appreciate that the component
members of the gut microbiota can be stable for years,76 the
community structure or the relative abundances of each member
is highly dynamic.77 To this end, Carmody et al78 described the
role of host genetics in driving dietary-related alterations in gut
microbiota composition. This study proved that diet is a pre-
dominant environmental factor over host genetics in shaping
gut microbiota composition. This theory was based on previous
studies whereby monozygotic twins failed to possess more
similar gut microbiota profiles when compared with dizygotic
twins at various ages from infancy to adulthood, suggesting that
host genetic factors play a minor role in altering the human gut
microbiota.30 79 The results showed that consumption of a
HF-high-sugar diet reproducibly altered the gut microbiota in
five inbred mouse strains, mice deficient for genes relevant to
host–microbial interactions (MyD88−/−, NOD2−/−, ob/ob and
Rag1−/−) and in >200 outbred strains.78 Thus, the study con-
cluded that diet is a dominant environmental factor that alters
the gut microbial community universally in the host, despite
genetic variation. Furthermore, dietary-related gut microbial
changes occurred within an average of 3.5 days and were revers-
ible.78 Indeed, the interactions between host genetics and envir-
onmental conditions have recently been described as
confounding factors in the development of metabolic syndrome.
Ussar et al80 discovered that the phenotype of the 129SvEv/Tac
(129T) mouse strain from Taconic Farms, usually susceptible to
developing diet-induced obesity and enlarged livers on HF-diet
but with normal insulin sensitivity and mild glucose intolerance,
could be altered through environmental normalisation over at
least three generations to become ‘metabolic syndrome resist-
ant’, similar to the phenotype of the genetically related
129SvEv/ImJ (129J) strain from Jackson Laboratories.
Environmental normalisation of the 129T strain remodelled the
microbiota, and these changes correlated with a metabolic resist-
ant phenotype.80 It must be noted that environmental normal-
isation of the C57Bl/6J and the 129J strains had no significant
effect on metabolic phenotype, despite a changed gut micro-
biota.80 This study is crucial in describing the importance of
dietary, genetic and microbial interactions on the development
of metabolic syndrome.

If diet is a dominant environmental factor driving gut micro-
bial changes, then Bolnick et al81 have demonstrated that these
changes are sex dependent. Laboratory fish, laboratory mice and
humans have all demonstrated sex-dependent, diet–microbiota
associations. Interestingly, this means that diet affects gut micro-
biota differently in males and females. From a clinical perspec-
tive, if the intention is to take advantage of the dominant effect
dietary factors have on shaping a more healthful gut microbiota,
perhaps future therapies ought to be sex specific.

The gut microbiota shape obesity
On a global scale, projection estimations have predicted that the
obesity epidemic rose from 400 million obese adults in 2005 to
>700 million in 2015, a trend that is set to continue towards

2030.82 83 Characterised by an excess accumulation of body fat
and a low-grade systemic inflammatory tone, behavioural pat-
terns including dietary trends remain the underlying cause of
this imbalance of energy input versus expenditure. Convenient,
easily accessible, energy-dense foods and overnutrition represent
major starting points altering lipid metabolism, systemic inflam-
mation and the gut microbiota. Although studies highlighting
the impact of dietary patterns and overnutrition on gut micro-
biota composition are plentiful, few decipher a clear link
between the microbial changes observed and the mechanisms
involved. In addition, the definition of this ‘microbial signature’
of obesity is ever changing, each new study describing conflict-
ing compositional results to the last. Nonetheless, microbial
intervention or the promotion/inhibition of the growth of
certain species are attractive proposals for the future prevention
of this obesity epidemic.

Turnbaugh et al84 performed one of the first studies that
definitively linked the gut microbiota with weight gain, caused
by an increase in the energy-harvesting capabilities of the ‘obese-
microbiota’. The gut microbiome possesses glycoside hydrolase
enzymes, not found in the human genome and that are crucially
involved in hydrolysing and fermenting a wide variety of dietary
polysaccharides that enhance host energy status.85 86 The micro-
bially derived energy from these otherwise indigestible complex
polysaccharides are in the form of short-chain fatty acids (SCFA)
(acetate, butyrate and propionate, predominantly). SCFAs are
crucial to host health and are the principal energy source for
colonocytes as well as playing a key role in the prevention and
treatment of metabolic and bowel disorders and certain types of
cancer.87–91 Germfree mice develop less body fat than conven-
tionally raised mice and germfree mice colonised with the gut
microbiota of conventional mice, despite increasing their food
intake and decreasing their metabolic rate.92 Furthermore,
germfree mice colonised with an ‘obese-microbiota’ isolated
from genetically obese ob/ob mice had a greater percentage
increase in body fat than those colonised with a ‘lean-
microbiota’, despite no significant differences in energy con-
sumption or initial body fat/weight between the groups.84 In
this setting, the germfree mouse model has provided invaluable
insights into the link between gut microbiota and body fat accu-
mulation in the host.

At the compositional level, obesity is associated with changes
in abundance ratios of two of the most dominant phyla (consti-
tuting >90% of known phylogenetic categories), namely
Firmicutes and Bacteroidetes (figure 1). However, while some
studies have described increases in the proportion of Firmicutes
to Bacteroidetes in the obese phenotype, compared with normal
weight individuals30 and weight loss is said to reduce the
Firmicutes to Bacteroidetes ratio in human subjects,31 these find-
ings are not universal32 53 and so the usefulness of the
Firmicutes:Bacteroidetes ratio as a compositional biomarker for
obesity remains unclear.

The low-grade inflammatory state characteristic of obesity can
be further exacerbated by microbiota-associated inflammatory
processes (figure 1). Cani et al71 93 first described the concept
of metabolic endotoxemia (ie, increased plasma LPS) in a series
of experiments in mice. The first finding was that both fat
feeding and a HF diet increased plasma LPS levels by two-fold
and five-fold, respectively.71 It was also observed that subcutane-
ous infusions of LPS into mice increased insulin resistance and
obesity similar to that seen after feeding the HF diet.71

This positive correlation between HF feeding, genetic obesity
(ob/ob), type 2 diabetes (T2D) (db/db) and metabolic endotoxe-
mia has since been confirmed in mice.94 95 Furthermore,
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probiotic,93 prebiotic96 and antibiotic94 therapies have improved
metabolic inflammatory parameters in HF diet fed and ob/ob
mice. In a healthy state, the translocation of LPS, through the
intestinal epithelium, is restricted as it damages the integrity of
the intestinal barrier. This gut barrier dysfunction observed in
the obese state may represent an open door for microbes and
microbial-derived LPS endotoxin to enter systemic circulation,
increasing gut permeability94 97–99 and paracellular permeability
by disrupting tight-junction proteins that link epithelial cells
together (eg, claudin, occludin and zonula occludens).100

Mechanistically, increased gut permeability in obese mice may
have been associated with an alteration in the expression, local-
isation and distribution of two tight-junction proteins (occludin
and zonula occludens 1) in the small intestine.94 95 97 99 Thus,
microbial-associated metabolic endotoxemia appears to repre-
sent one of the most important links between the gut micro-
biota, intestinal permeability and the low-grade inflammatory
state linked with obesity.

Ridaura et al101 recently described a fascinating link between
diet, gut microbial composition and obesity. Their cohort of
female twin pairs, discordant for obesity, provided a unique
opportunity to examine the interrelations between obesity, asso-
ciated metabolic disorders, diet and the gut microbiota.
Transplantation of human gut microbiota from each member of
discordant twin pairs for obesity permitted the donors’ commu-
nities to be replicated in germfree mice, that is, transplantation
of a human ‘obese-microbiota’ from one co-twin transmitted an
increase in total body and fat mass, as well as other
obesity-associated metabolic phenotypes with corresponding
faecal bacterial cultures in germfree mice.101 Furthermore,
cohousing mice transplanted with this human ‘obese-microbiota’
with mice transplanted with a human ‘lean-microbiota’

prevented the development of obesity.101 Invasion of specific
members of the Bacteroidetes phylum from the transplanted
mice with the ‘lean-microbiota’ to their ‘obese-microbiota’ litter-
mates correlated with the prevention of obesity development.101

In addition, following consumption of a low-fat, high-fibre diet,
the ‘obese-microbiota’ failed to colonise lean mice as efficiently
as it had in mice consuming a HF, low-fibre diet when cohoused
with mice transplanted with human ‘lean-microbiota’.101 The
results of this study highlight both diet and environment as
crucial factors involved in altering the microbiota to affect the
metabolic phenotype in the host.

Compositional differences are evident in the obese relative to
the lean state.67 With obese individuals harbouring lower bacter-
ial richness and characterised by greater adiposity, with
increased insulin resistance, dyslipidemia and higher rates of sys-
temic inflammation (increased C reactive protein), when com-
pared with high bacterial richness individuals.67 Importantly, the
significant differences in bacterial richness and thus microbial
communities/metabolic capabilities between obese and lean
groups in this study were based on 46 genera. Bacteroides,
Parabacteroides, Ruminococcus, Campylobacter, Dialister,
Porphyromonas, Staphylococcus and Anaerostipes were more
dominant in subjects of low bacterial richness with an obese
phenotype, while Faecalibacterium, Bifidobacterium,
Lactobacillus, Butyrivibrio, Alistipes, Akkermansia, Coprococcus
and Methanobrevibacter were more prevalent in subjects with
high bacterial richness and a lean phenotype.67 These compos-
itional data permitted a closer look to be taken at the microbial
metabolic capabilities of individuals with high and low bacterial
richness. It was concluded from the vast amount of data that
subjects with low bacterial richness and an obese phenotype had
(1) a reduction in butyrate-producing bacteria (2), a reduction in

Figure 1 Compositional and functional alterations in the healthy gut microbiota versus the obese-diabetic microbiota. The metabolic processes in
peripheral organs leading to increased adiposity, inflammation, oxidative stress, insulin resistance and lipogenesis are associated with the altered
microbiota profile associated with the obese-diabetic phenotype. IEC, intestinal epithelial cell; LPS, lipopolysaccharide; SCFA, short chain fatty acid.
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hydrogen and methane production (3), an increase in mucus
degradation and (4) an increase in the potential to manage oxi-
dative stress.67 Thus, it appears that obese individuals have
lower bacterial richness and harbour a microbiota that predis-
poses them to further inflammation.

It is clear that obesity is associated with an altered gut micro-
biota that worsens this debilitating disease. Diversity is key to
increasing the metabolic capabilities of the gut microbiota in
order to prevent worsening metabolic endotoxemia, mucus deg-
radation and oxidative stress. In the vast gut microbial ecosys-
tem, two residents have been the subject of extensive research
over the last number of years due to their negative association
with the obese phenotype. Intriguing data have supported an
antiobese movement of these two species, so much so that alle-
viating obesity and associated metabolic disorders through
increasing their abundances has become a real opportunity.

Akkermansia muciniphila
A. muciniphila is a mucin-degrading Gram-negative bacterium
residing in the mucus layer of intestinal epithelial cells and that
constitutes about 3–5% of the gut microbiota biomass in
humans.102 Murine73 and human74 studies have demonstrated
an inverse correlation between A. muciniphila and overweight,
obesity and diabetes. Everard et al73 99 reported convincing data
describing a potential protective function of A. muciniphila in
murine models of obesity. They describe a comprehensive data
set highlighting an inverse correlation between genetic and
dietary models of obesity and gut concentrations of A. mucini-
phila.73 Furthermore, prebiotic supplementation with oligofruc-
tose (dietary fibre) dramatically increased the abundance of A.
muciniphila in genetically obese mice99 and restored the
decreased basal levels of A. muciniphila associated with obesity,
improving metabolic function and endotoxemia.73 Such studies
suggest that A. muciniphila plays a role in controlling fat
storage, adipose tissue inflammation and glucose metabolism.

A recent ex vivo model based on mouse ileal organoids has
provided some novel data linking the gut microbiota and the
host.103 Lukovac et al103 reported that ileal organoid expression
of fasting induced adipocyte factor, G-protein coupled receptor
(Gpr)-43, histone deacetylases and peroxisome proliferator-
activated receptor-γ were modulated by A. muciniphila and the
SCFA, propionate.104 Thus, it is clear that A. muciniphila and
its SCFA regulate transcription factors and genes involved in cell
cycle control, lipolysis and satiety.103 Previously, the effect of
A. muciniphila on cell survival, more specifically in cell death
receptor signalling within ileal tissue, has also been described in
vivo in germfree mice.105

Early life therapy in the non-obese diabetic (NOD) mouse
model of diabetes with antibiotics increased the relative abun-
dance of A. muciniphila with an improvement to the diabetic
phenotype.106 In addition, Dubourg et al107 demonstrated a
dramatic colonisation of the human gut microbiota by the
phylum Verrucomicrobia following broad-spectrum antibiotic
treatment. Interestingly, all Verrucomicrobia phylotypes were
represented by A. muciniphila.107 This shift in gut microbial
composition highlights the susceptibility of some bacterial popu-
lations following antibiotic therapy and the susceptibility of
other more resistant microorganisms to thrive under antibiotic
pressure.108 In a follow-up study, Caputo et al109 assembled the
whole genomes of A. muciniphila isolated directly from the
stool of the patients who partook in the previous study using a
metagenomic approach.

Despite the confounding evidence suggesting the anti-
inflammatory effects of A. muciniphila in obesity,73 diabetes106

and colitis,110 others have failed to demonstrate such health
benefits. Higher abundances of A. muciniphila have been
observed in healthy controls in some human gut microbiota
studies.38 In addition, the Chinese MGWAS study reported that
337 of the 2176 A. muciniphila-related genes were more abun-
dant in T2D patients compared with healthy controls.37 It has
also been suggested that A. muciniphila could facilitate intestinal
inflammation through mucin degradation as previously shown
in Salmonella typhimurium-infected mice.111 Such conflicting
results highlight the need for further studies to decipher the
precise role of A. muciniphila in inflammatory-related diseases
and to clarify previous discrepancies.

Faecalibacterium prausnitzii
Faecalibacterium prausnitzii is also an abundant intestinal
microbe comprising approximately 4% of the mainly luminal
microbiota.105 Patients with inflammatory symptoms of
inflammatory bowel disease (IBD), obesity and related
metabolic dysfunctions harbour reduced abundances of
F. prausnitzii.37 38 74 112–114 Some recent functional studies have
described increased F. prausnitzii in overweight subjects who
underwent a fasting programme over 1 week followed by sup-
plementation of a probiotic formula for 6 weeks.114 Dietary
supplementation with a type 3-resistant starch in the SATIN
project altered the gut microbiota composition in overweight
human subjects by enriching taxa involved in starch degradation
(Ruminococcus bromii) and butyrate production (Eubacterium
rectale) and increasing F. prausnitzii.115 This study describes the
association between microbial fermentation of resistant starch
and satiety.115 Furthermore, F. prausnitzii has shown protective
effects in both acute112 and chronic116 inflammatory responses
in chemically induced models of inflammation. Considering the
low-grade inflammatory tone, symptomatic of IBD and often
associated with obesity, Martin et al recently investigated the
protective effects of F. prausnitzii in a preclinical murine model
of colitis.117 Importantly, decreased intestinal permeability was a
feature following F. prausnitzii supplementation in mice chem-
ically subjected to chronic low-grade inflammation and gut dys-
function compared with controls.117 Results from this study
prompted the authors to describe F. prausnitzii as a potential
novel probiotic that can be successfully used in the treatment of
gut dysfunction and inflammation. Although the authors
propose that the protective effects of F. prausnitzii could at least
be in part due to the enhancement of tight junction proteins in
the epithelial cells, promoting barrier function, further studies
are needed to determine the precise role of F. prausnitzii in
obesity and inflammatory-related metabolic diseases.

The endocannabinoid system and obesity
The endocannabinoid (eCB) system has been proposed to be
involved in the regulation of energy homeostasis, appetite118

and gut barrier function119 via the microbiota–gut–brain
axis during obesity.120 The eCB system is composed mainly of
the bioactive lipids anandamide (AEA; an
N-arachidonoylethanolamine), 2-arachidonoylgycerol (2-AG)
(synthesised locally in the GI tract), the proteins that regulate
their production/degradation and the cannabinoid receptors
CB1 and CB2, through which they signal. While both AEA and
2-AG are CB1 and CB2 ligands, CB1 is expressed mainly in the
liver, pancreas, adipose tissue and the peripheral and central
nervous systems.121 CB2 is expressed mainly in the immune
cells, in addition to the brain, pancreas and adipose tissue.122 In
short, CB1 activation reduces gastric motility while CB2 activa-
tion reduces an inflammatory response. Interestingly, obesity is
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associated with an increase in eCB system tone123 and an
altered expression of CB1. For example, CB1 receptor knockout
mice have upregulated eCB signalling in a diet-induced obese
mouse model.124 Muccioli et al125 have shown in genetically
obese and T2D mice that CB1 receptor antagonists decreased
gut permeability. Furthermore, by altering gut microbiota com-
position through prebiotic feeding, colonic CB1 mRNA expres-
sion is reduced and antibiotic treatment also decreased the
expression of the CB1 receptor in the colon.125 These results
correlate with a reduction in colonic AEA (endogenous CB1

ligand), an increase in fatty acid amine hydrolase (the main
enzyme in degradation of AEA) and reduced plasma LPS
levels.125 This suggests that the gut microbiota indeed play a
role in regulating obesity and obesity-associated metabolic endo-
toxemia through the eCB system.

The gut microbiota and type 1 diabetes
Unlike T2D, type 1 diabetes (T1D) is primarily caused by a
genetic disposition to pancreatic β-cell autoimmunity,126 in
which inflammatory T cells are acknowledged to play a central
role.127 Among the genetic loci identified in T1D patients, it is
specific human leucocyte antigen (HLA) genotypes that have the
strongest identified genetic factor to date.128 129 However, twin
and family studies have shown that only a fraction of genetically
predisposed individuals will go on to develop T1D,130–132 and
with the incidence of T1D increasing steadily by about 3–4%
over the past few decades, particularly among young children in
developed countries,133 environmental factors seemingly play a
stronger role than once anticipated towards triggering this auto-
immune response. The impact of environmental factors on the
increasing incidence and decreasing age of diagnosis of children
with lower-risk class II HLA genes have been described.134

Infant feeding practices, diet and viruses are all relevant envir-
onmental triggers shown to play a role in disease onset.
Moreover, risk of T1D onset in childhood is higher in children
delivered by caesarean section,135 where there is also an altered
gut microbiota composition.4

Genetically induced, that is, the NOD mouse and the bio-
breeding diabetes prone (BBDP)/diabetes-resistant (BBDR) and
chemically induced, that is, streptozotocin (STZ) and
alloxan-induced T1D animal models all describe convincing
data linking an altered microbiota with disease. Wen et al136

previously described the importance of the gut microbiota and
its interactions with the host innate immune system in modulat-
ing T1D onset. MyD88 is an adaptor for multiple innate
immune receptors, including TLRs involved in microbial
sensing. It is the MyD88 signalling pathway that is required for
autoimmune diabetes development in NOD mice under SPF
conditions.136 The knockout of MyD88 in NOD mice com-
pletely protects against T1D development.136 Furthermore, het-
erozygous MyD88−/− NOD mice, which normally develop
robust diabetes, are protected from disease development when
exposed from birth to the gut microbiota of a MyD88 knockout
NOD donor.136 Thus, disease progression in the NOD mouse is
partly driven by an exaggerated innate immune response to sym-
biotic microbiota and altering microbial composition can curtail
this response and prevent disease. Exposure to bacterial antigens
and infections has also been shown to decrease the risk of NOD
mice developing T1D.137

Further evidence for the role of the gut microbiota in T1D
arises from the studies of BBDP and BBDR rodents.
Interestingly, treating BBDP mice with antibiotics decreased
their risk of developing T1D.138 Focusing on the proportions of
bacteria found in BBDP rats at disease onset, probiotic-like

microbiota such as bifidobacteria and lactobacilli were lower
while Bacteroides, Ruminococcus and Eubacterium were higher
compared with BBDR rats.139 However, pre-T1D onset the gut
microbiota of BBDP rats was significantly different to that of
BBDR rats139 and so it is difficult to conclude from this study
whether microbial alterations were causal or consequential of
disease since changes were observed before and after disease
onset. Recently, we described distinct microbial alterations in
STZ-induced T1D rats over time.140 In this study, rats were
injected with a single dose of the pancreatic β-cell toxin STZ
and T1D was apparent following 1 week. Although this model
was severe, given the lack of insulin therapy throughout the
5 weeks of disease, with blood glucose levels between 500 and
600 mg/dL in diabetic rats, it does provide a comprehensive
account of the microbial alterations that occurred following
disease onset and progression over time.140 Most notably, T1D
onset was associated with a shift in the Bacteroidetes:
Firmicutes ratio, while at the genus level increased proportions
of lactic acid producing, Bifidobacterium and Lactobacillus were
identified at the later stages of T1D progression. Coincidently,
T1D increased caecal lactate levels and decreased caecal butyrate
levels compared with healthy controls. It has been suggested that
the imbalance of bacteria that produce SCFA can affect gut per-
meability and cause T1D. Brown et al35 have described the
importance of butyrate in intestinal permeability during T1D.
Heightened gut permeability has been demonstrated as one of
the phenomena that precedes the clinical onset of T1D in both
animal models of autoimmune diabetes as well as in patients with
T1D and pre-diabetic individuals.141–145 It is the fate of lactate
that is crucial in determining intestinal health as conversion to
butyrate results in mucin synthesis146–149 and tighter junc-
tions150 151 while conversion to other SCFA such as acetate and
propionate does not induce mucin synthesis.35 In addition, butyr-
ate contributes to colonic health through its anti-inflammatory
properties152–154 and decreases bacterial transport across meta-
bolically stressed epithelial cells,153 thus preventing the develop-
ment of the so-called ‘leaky gut’. Furthermore, the STZ-induced
T1D rats demonstrated a reduced microbial diversity after just
1 week of disease onset that did not recover over the duration of
the trial.140 Previously described are the links between a reduced
microbial diversity and obesity-associated metabolic diseases.67

The altered gut microbiota associated with T1D has also been
reported in numerous human studies. A 4-matched case–control
study in Finland reported that the gut microbiota differed
between children who were healthy and those with autoimmune
disorders.155 A higher level of Bacteroidetes relative to
Firmicutes approximately 6 months after birth was observed in
those who eventually developed T1D and suggested that this
ratio of Bacteroidetes to Firmicutes increased over time in auto-
immune cases, but declined in those who did not develop
T1D.155 The authors concluded that the ratio of Bacteroidetes
to Firmicutes could be an early diagnostic marker of pending
autoimmunity problems. Such case–control studies have asso-
ciated a higher Bacteroides abundance with autoimmunity, with
increased Bacteroides ovatus and Bacteroides uniformis and
decreased Bacteroides fragilis in T1D patients.34–36 155

Furthermore, butyrate producers such as Faecalibacterium and
Roseburia and mucin degraders Prevotella and Akkermansia
were all found in greater proportions in healthy controls
compared with cases and have been described as protective
against T1D.34–36 155 A recent German study, however, found no
differences in the Bacteroides abundance between children who
developed anti-islet cell autoimmunity and healthy controls
between 6 months of age and 3 years.156 They did, however,
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observe an increase in the abundance of the phylum
Verrucomicrobia, of which Akkermansia is the only known gut
microbial member.105 156 Previously, Brown et al35 suggested
that a gut microbiota abundant with butyrate producers,
increases mucin production, increases tight junction assembly,
and thus, increases epithelial cell integrity. Therefore, with
increased mucin production, a favourable niche exists for mucin
degraders such as A. muciniphila that could possibly be used as
an indicator of gut integrity.35 Avery recent study has extensively
examined the gut microbiota composition and diversity of 33
infants genetically predisposed to T1D.157 The authors acknowl-
edged the limitations of the study being that all children in their
cohort carry T1D-predisposing HLA alleles and are restricted to
the countries of Finland and Estonia; nonetheless, their results
are extremely novel in linking the gut microbiota with disease.157

The study reported a 25% reduction in gut microbial diversity in
T1D patients compared with seroconverters (those positive for at
least two of the five autoantibodies analysed; insulin autoanti-
bodies, glutamic acid decarboxylase antibodies, islet antigen-2
antibodies, zince transporter eight antibodies and islet cell anti-
bodies) and non-converters. Importantly, this was associated with
alterations to both phylogenetic microbial composition and
metabolic pathways in T1D diagnosed children throughout the
study period.157 In addition, these shifts occurred prior to
disease onset but after seroconversion and were specific to T1D
progressors but not seen in seroconverters without disease.157

Remarkably, this novel data set describes a gut microbial profile
that precedes T1D development but that is not found in serocon-
verters without disease or non-converters. Such results highlight
a unique opportunity to exploit gut microbial profiles in distin-
guishing between T1D progressors from non-progressors and so
has major implications for the future treatment of disease, based
on microbial profiles.

The gut microbiota and T2D
It is estimated that >80% of patients with T2D are overweight
and increased body weight is now recognised as the greatest risk
factor of T2D, aside from genetic and lifestyle factors.
Numerous studies have focused on the relationship between
obesity and the gut microbiota; however, with T2D now gener-
ally considered an attribute to obesity, observational studies
linking glucose intolerance and insulin resistance associated with
T2D with the gut microbiota are somewhat lacking. Once again,
inflammatory pathways underscore the evolution of insulin
resistance.158 Patients with metabolic syndrome and T2D
exhibit a remarkable endotoxemia.159 160 Recent studies have
suggested that LPS may be crucially involved in T2D-associated
inflammation. Serino et al161 reported an increase in gut perme-
ability and endotoxemia with a specific gut microbial profile in
mice receiving a HF diet until they became diabetic. In line with
this, Amar et al162 163 described the concept of ‘metabolic infec-
tion’ to define the contribution of the gut microbiota in the
endotoxemia-associated inflammation coupled with insulin
resistance in T2D. Blood levels of certain bacterial DNA (>85%
derived from Proteobacteria) were found to be enhanced in pre-
diabetes.163 Microbially derived endotoxin could, therefore,
play a significant role in insulin resistance associated with T2D.

Qin et al37 were among the first authors to complete a signifi-
cant metagenome-wide association study in T2D.
High-throughput sequencing on a cohort of Chinese patients
with T2D demonstrated some interesting correlations between
the clinical data and gut microbial composition.37 While
butyrate-producing bacteria (Clostridiales sp. SS3/4, E. rectale,
F. prausnitzii, Roseburia intestinalis, among others) were

enriched in healthy control subjects, patients with T2D exhib-
ited an altered gut microbial profile, marked by decreased
butyrate-producing bacteria such as R. intestinalis and F. praus-
nitzii.37 Interestingly, the T2D gut microbial profile was colo-
nised by opportunistic pathogens such as Bacteroides caccae,
various Clostridiales, Escherichia coli and the sulfate-reducing
species Desulfovibrio.37 The functional capacity of the T2D gut
microbial profile was linked with enrichment in the membrane
transport of sugars, oxidative stress responses, branched chain
amino acid transport, sulfate reduction and decreased butyrate
biosynthesis.37 In total, >3% of the gut microbial genes differed
between healthy controls and patients with T2D.37

In a follow-up study, Karlsson et al74 reported compositional
changes linked with T2D in a Scandinavian cohort of postmeno-
pausal women. The data presented in this cohort again revealed
significant decreases in butyrate producers R. intestinalis and F.
prausnitzii in T2D women compared with women with
impaired glucose tolerance.74 Both cohorts also demonstrated
increases in Lactobacillus species associated with T2D.37 74 As
already discussed, butyrate plays a significant role in the main-
tenance of intestinal epithelial cell integrity with important
functions in the prevention of ‘leaky gut’ associated with dia-
betes. Therefore, the role of SCFA, particularly butyrate and
butyrate-producing bacteria, is crucial for health in obesity and
diabetes. As studies in T2D consistently reveal that production
of SCFAs, especially butyrate, is impaired, it is reasonable to
assume that such mechanisms may contribute to the low-grade
inflammation observed in such disorders.164

Although plentiful in compositional data, both Chinese and
Scandinavian cohorts lacked data determining whether
T2D-specific medication may or may not have influenced gut
microbial profiles of patients or whether such medications could
have ‘corrected’ the altered microbial ecosystem associated with
T2D. Recent promising data described a role for metformin, one
of the most widely prescribed T2D therapeutic agents, towards
improving the gut microbial profile in T2D.165 Following
6 weeks of metformin treatment in HF-diet fed mice, both the
glycaemic profile and microbial profile (29 genera) was altered,
when compared with HF-fed controls.165 Interestingly, HF-fed
mice treated with metformin showed higher abundances of the
mucin-degrading bacterium Akkermansia that correlated with
increased mucin-producing goblet cells.165 Furthermore, oral
administration of A. muciniphila to HF-diet fed mice in the
absence of metformin, significantly enhanced glucose tolerance
and attenuated adipose tissue inflammation.165 This improve-
ment in glucose tolerance associated with A. muciniphila had
also previously been identified.73 The results of Shin et al were
further confirmed a few months later by Lee and Ko,166 who
demonstrated an increase in A. muciniphila following metformin
treatment with a negative correlation between glycaemia and
A. muciniphila abundance. In line with this, Zhang et al38

reported that the abundances of Verrucomicrobiaceae and A.
muciniphila were significantly reduced in patients with pre-
diabetes compared with healthy controls. Thus, A. muciniphila
may contribute to the antidiabetic effect of metformin, suggest-
ing that pharmacological manipulation of the gut microbiota in
favour of Akkermansia may be a potential treatment for T2D.
These studies describe attractive data sets that highlight the possi-
bility of gut microbial manipulation to alleviate T2D and
describes a new mechanism for the therapeutic effect of metfor-
min in treating T2D.

Following on from this, one recent study dissected 784 avail-
able human gut genomes from the MetaHIT project, novel
Danish MetaHIT genomes, cohorts of female Swedish patients
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with T2D and Chinese patients with T2D to demonstrate how
metformin impacted on gut microbial profiles.167 For these 784
gut metagenomes, taxonomic and functional profiles were deter-
mined. Using the available data sets and controlling for metfor-
min, the authors identified a unified signature of gut
microbiome shifts in T2D, characterised by a depletion in
butyrate-producing taxa.167 It was shown that gut microbial
function was altered following metformin treatment such that
intestinal lipid absorption and LPS-triggered local inflammation
was reduced, providing a competitive advantage to Escherichia
species, possibly triggering a positive feedback loop that contrib-
uted to the taxonomic changes.167 Akkermansia was also found
at similar abundances in non-diabetic control and metformin-
treated diabetic patients.167 Furthermore, functional analysis
demonstrated significantly enhanced butyrate and propionate
production potential in metformin-treated patients. This is of
significance due to the potential of these SCFA to trigger intes-
tinal gluconeogenesis.168 169 Thus, characterisation of a
metformin-associated human gut microbiome highlighted novel
microbial mechanisms that contribute to the beneficial effects of
the drug on host metabolism and provided evidence for the
importance of controlling for metformin treatment once report-
ing functional and compositional shifts in the human
microbiome.

What’s more, microbial manipulation to treat insulin resist-
ance has previously been described, whereby microbial faecal
transplant from lean donors to male insulin-resistant subjects
significantly improved peripheral insulin resistance associated
with an altered small intestinal microbial composition.170

PROBIOTICS AS DIABETIC THERAPIES
It is now well established that there is enormous potential for
human metabolic health in the manipulation of the gut micro-
biome.171 We have already discussed the inverse relationship
between gut microbiota diversity and diabetic state; however, it
is likely that certain keystone microbial taxa, alongside diversity,
may be at the centre of this association. Aside from diet, pro-
biotic administration currently represents the most effective and
safest means of selectively altering the gut microbiome, ultim-
ately with the intention to improve host health.78 172

Probiotics for T1D
It is well established that the microbiome can have a central role
in the progression of T1D.173 However, it also appears to be
true that we can alter the microbiome to delay onset or manage
T1D pathogenesis. Three main targets have emerged for pro-
biotic therapy in T1D; reduction or redirection of autoimmun-
ity, increased β-cell proliferation and decreased β-cell apoptosis
(figure 2).

The redirection of T-cell differentiation towards Treg cells by
probiotics, commensals and their metabolites has received some
attention. A probiotic cocktail of three Lactobacillus plantarum
strains was observed to significantly reduce inflammatory cyto-
kines interferon (IFN)γ and tumour necrosis factor-α produc-
tion, while increasing anti-inflammatory interleukin-10
production in a mouse model of autoimmunity.174 The zwitter-
ionic polysaccharide of B. fragilis (PSA) has also been implicated
in a similar mechanism of anti-inflammatory protection for
autoimmune disease-induced mice.175 176 One study investigat-
ing the ability of two Lactobacillus spp. isolated from the GI
tract of T1D-resistant mice found that administration of a
Lactobacillus johnsonii delayed or prevented the onset of the
disease in a BioBreeding model.177 The strain elicited this

response by reducing host IFNγ and iNOS levels, while also
increasing claudin expression.

Conversely, some members of the gut microbiota have been
shown to accelerate T1D.178 Segmented filamentous bacteria
(SFB) are a Gram-positive, strict anaerobe taxonomic lineage
within the Clostridiaceae family, which occupy the GI tract.179

These SFB are found tightly associated with the intestinal wall
and, as a result, interact with the host immune system causing
considerable differentiation towards inflammatory TH17 cells in
the small intestinal lamina propria.180 While this type of immu-
nostimulation can be extremely important to the development
of a healthy host immune system,181 this same action can
exacerbate autoimmunity in others that are genetically suscep-
tible to T1D.182 Just one probiotic strain has previously been
described as displaying anti-SFB activity in an immunocom-
promised mouse model.183 However, the mechanistic features
proposed by the authors are those common to many probiotics
—direct pathogen exclusion, antimicrobial activity or indirect
activity through host immunostimulation184 185—suggesting that
SFB may be a potential target for probiotic therapy in T1D.

GABA is a metabolite produced from glutamate by the glu-
tamate decarboxylase (GAD) pathway of many lactic acid bac-
teria,186 as a cellular response to acidic stress.187 In the host,
GABA is produced by β-cells and acts as the main inhibitory
neurotransmitter in the enteric and parasympathetic nervous
systems, where it is involved in pain perception and stress.188

However, GABA has also been proposed as a potential therapy
in T1D pathogenesis.189 190 GABA acts on β-cell receptors,
GABAAR and GABABR, to increase insulin production and
β-cell proliferation, while also reducing β-cell apoptosis.191 In
addition, CD4+ T cells have also been shown to harbour
GABAAR, allowing the amino acid to interact with the immune
system to effectively inhibit the inflammatory process involved
in the progression of T1D.192 193 While these studies have
investigated the use of injected or parenteral delivery of pure
GABA, none have applied GABA-producing probiotics to a T1D
model. The research to date investigating the bioactivity of
GABA-producing probiotics has been solely focused on the gut–
brain axis.194 However, selected probiotics can produce physio-
logically relevant levels GABA in faecal fermentations186 and, as
such, should be considered potential T1D therapies warranting

Figure 2 Putative mechanisms of action through which prebiotics and
probiotic bacteria can impact on host metabolic health in type 1 and
type 2 diabetes. Green and red texts indicate hormones, systems and
actions that are upregulated and downregulated, respectively. LPS,
lipopolysaccharide.
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further investigation. One such study recently conducted within
our group investigated the potential of an efficient
GABA-producing Lactobacillus brevis in modifying host metab-
olism (Marques et al, in press). Following 5 weeks of probiotic
intervention, healthy rat serum insulin was increased by 70%
when compared with controls, while all other metabolic para-
meters were not significantly altered.

An intriguing novel avenue that is currently being explored in
probiotic research is the engineering of commensal bacteria that
can deliver bioactive molecules capable of managing or correct-
ing a disease state.195 Due to their safety and the association
that probiotics have with host intestinal mucosa, this system has
been of considerable interest for vaccine delivery (for review,
see Wells and Mercenier186 196). Such treatments have been
coined as synthetic signalling therapeutics.197 In a recent study,
a recombinant probiotic Lactobacillus gasseri ATCC 33323
capable of secreting the inactive full length form of glucagon-
like peptide-1 (GLP-1)(1-37) was designed.198 GLP-1 is a con-
served mammalian peptide produced by neuroendocrine L-cells,
which can lower postprandial glucose levels in T2D by stimulat-
ing insulin production and attenuating glucagon release.199

GLP-1 also acts systemically on the pancreas, liver, heart,
stomach and brain, impacting on gastric emptying, satiety and
lipid absorption and metabolism.200 201 As such, a plethora of
drugs have been developed as GLP-1R agonists or blockers
(gliptins) of DPP-4, the enzyme that cleaves active GLP-1 in cir-
culation.202 Although GLP-1-based therapies have been entirely
targeted towards the treatment of T2D, it has become clear that
this full-length form of the peptide may have significant poten-
tial as a T1D therapy. GLP-1 was originally identified in its
extended 1–37 form through cDNA cloning,203 although it was
thought to have little bioactivity compared with the truncated
GLP-1 (7–37 and 7–36), later discovered to be naturally pro-
duced by human β-cells.204 However, a recombinant GLP-1(1-
37) producing E. coli has previously been shown to stimulate
the production of 1 ng insulin per millilitre of media in Caco-2
cells.205 Furthermore, the peptide has also been implicated in
the conversion of crypt-located small intestinal epithelial cells to
insulin+ β-like-cells ex vivo.206 Following STZ-induction of
T1D in mice, Duan et al demonstrated that twice daily adminis-
tration of a high dose (1.6×1010 CFU/kg) of this recombinant
GLP-1(1-37) producing probiotic for 90 days resulted in ∼30%
restoration of insulin-production capabilities and significantly
improved glucose metabolism. It was confirmed by immuno-
fluorescent microscopy that this activity was through differenti-
ation of intestinal crypt epithelial cells to β-like cells. Thus,
GI tract-derived probiotics may serve as drug delivery or signal-
ling systems, which could have downstream implications for
diabetes.207 208

Probiotics for T2D
Much of the initial research around probiotics as T2D therapies
has been through non-targeted approaches, assessing the ability
of different lactobacilli and bifidobacteria to attenuate the
effects of the disease state without any genuine molecular
hypothesis prior to experimentation.209 210 More recent studies
have progressed to implicating reduced inflammation, as a direct
result of improved tight junction function preventing metabolic
endotoxemia, as the source of the probiotic effect in diabetes
therapy (figure 2).162 211 212 This attenuation of low-grade
inflammation undoubtedly plays a central role in T2D therapy;
however, the manner in which this is achieved by probiotic bac-
teria is complex. The most compelling theories of the T2D–

microbiome interaction have come from the Delzenne and Cani

group of the University of Louvain (for review, see Cani
et al).162 204 206–214 The systematic research of this group has
uncovered several metabolic targets for probiotic therapies,
some of which we have previously discussed already.

The first and most thoroughly characterised targets for
probiotic-mediated T2D therapy are the SCFA. SCFA—primar-
ily acetate, butyrate and propionate—are thought to interact
with the host enteroendocrine system by binding to GPR41 and
GPR43.214 215 These GPCRs in turn upregulate the expression
of gut hormone precursor peptide proglucagon,216 GLP-1,217

GLP-2,95 gastric inhibitory polypeptide (GIP) and peptide YY
(PYY) levels,218 as well as adipocyte-derived leptin,219 while
downregulating ghrelin.220 As mentioned previously,
GLP-1-based therapies have demonstrated great efficacy in treat-
ing patients presenting T2D, as well as dyslipidemia. However,
microbiota-mediated modulation of these other gut hormones
also has significant implications for metabolic health, affecting
gut permeability, satiety, gastric emptying and food intake.221

Most recently, SCFAs have also been shown to act upon a
cAMP-dependent mechanism, increasing intestinal gluconeogen-
esis,168 which is thought to contribute to satiety.222 While some
studies have reported contrasting effects, this is likely a result of
the varying actions of specific SCFA. As we have discussed previ-
ously, it appears that butyrate may be of most significance in the
correction of metabolic endotoxemia disease states through pro-
liferation of colonic epithelial cells and tight junction func-
tion.151 The importance of butyrate-producing bacteria in T2D
development has been demonstrated by a recent human faecal
transplant study.170 This research implicates enteric butyrate-
producing bacteria, such as R. intestinalis, Faecalibacterium spp.
and Eubacterium hallii, as potential probiotics for the allevi-
ation of metabolic endotoxemia-induced T2D.223 There is also
evidence that more classical probiotics, such as the commercial
probiotic cocktail VSL#3, can offer complete correction of
weight gain and glucose intolerance associated with diet-induced
T2D in mice.224 Moreover, a recent transcriptomics study in
elderly patients demonstrated the ability of Lactobacillus rham-
nosus GG to promote the relative expression of butyrate-
producing Roseburia and Eubacterium genes within the meta-
genome.225 This could offer a more intriguing mechanism for
the anti-inflammatory effects attributed to traditional probiotics
in T2D therapy.

The second proposed target for T2D probiotic therapy is the
eCB system, already discussed in relation to obesity.226 CB1 is
involved in gut permeability and modulation of the gut micro-
biota appears to yield similar responses to CB1 antagonists,
upregulating expression and correcting the localisation of intes-
tinal epithelial tight junction proteins, occludin and zonula
occludens1.227 Furthermore, supplementation with 2×108 CFU/
day of live A. muciniphila increased ileum 2-AG and 2-
palmitoylglycerol levels in mice fed a HF diet, which had the
knock-on effect of reducing serum LPS content.73 The manner
in which A. muciniphila alters eCB levels remains unclear, but
the correlation is apparent and this may offer a mechanism of
action for the beneficial metabolic effects attributed to the
strain.

Finally, eCB-like lipids, such as N-oleoylethanolamine,
2-oleoylglycerol (2-OG) and linoleoylethanolamine have been
shown to interact with GPR119, a receptor that stimulates the
host enteroendocrine system.228 Live A. muciniphila administra-
tion has demonstrated potential in altering 2-OG in mice fed a
HF diet, contributing to tight junction function and significantly
improving glucose metabolism, through stimulation of intestinal
L-cell GLP-2 and GLP-1 production, respectively.73 In addition,
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the aforementioned increase in 2-AG production has been
shown to potentiate anti-inflammatory effects from 2-OG,
which could have further implications for correction of T2D.229

Additionally, GABA has also demonstrated potential in the
treatment of T2D ex vivo230 and in vivo231 through the same
pathways targeted for T1D. The former study, in which human
pancreatic islets were excised, demonstrated that the GABA sig-
nalling pathway was hindered in T2D compared with healthy
controls.230 However, GABABR agonist CPG55845 proved
capable of stimulating insulin release from islets of both T2D
and healthy control islets. Interestingly, Tian et al231 found that
GABA therapy in a diet-induced obese model of T2D improved
fasting glucose, glucose tolerance and insulin sensitivity through
action on peripheral GABAAR-expressing immune cells. The
study found that this in turn promoted a CD4+Fox3+ Treg dif-
ferentiation tone and, as a result, reduced T2D-associated
inflammation. The potential for GABA-producing probiotics as
T2D therapies certainly warrants preclinical investigation.

LIMITATIONS AND RISKS OF MICROBIOME-MEDIATED
THERAPIES
While this review has highlighted the major advances and prom-
ising outcomes of current microbiome-metabolism research, it is
important to comment on several limitations and potential risks
associated with the science. In terms of limitations, as is the case
for all personalised medicines, what works for me may not
work for you. That is to say that an individual’s genetics, spe-
cific diet, drug intake and endogenous microbiota may greatly
impact on the efficacy of certain microbiome-mediated therap-
ies. Moreover, some interventions may not only be ineffective in
combating an individual’s disease state, they may even be an
additional risk factor. Certain avant-garde bacterial therapy pro-
cedures have demonstrated great potential in combating grave
diseases: for example, the use of faecal microbiota transplants
(FMTs) in the treatment of Clostridium difficile infection.
However, with such efficacy comes risk. There have been
several anecdotal reports and a single case study reporting
increased weight gain following FMT from overweight
donors,232 mirroring preclinical outcomes. In addition, there
has even been speculation that transplantation from a mentally
unfit donor could induce the same phenotype in the recipient.
Although it is unlikely that single or even multistrain bacterial
therapies, which have undergone strenuous preclinical and clin-
ical investigation, would transfer such deleterious attributes.
However, it certainly warrants attention, and microbiome-
mediated therapies such as FMT will require significant regula-
tion in order to reduce safety risks and ensure whole system
host health.

CONCLUSION
The obesity epidemic has become a thorn in the side of a
21st-century global health crisis. Modern sequencing technolo-
gies have demonstrated that we are more microbe than man, in
fact we always were, but the vast data now available to prove
this are unarguable. The relationship between microbe and man
is symbiotic, but all good relationships need work. And so we
must nurture and feed ourselves healthy by indirectly feeding
our microbes healthy too. The compelling evidence described in
this review suggests that diet and environment can shape gut
microbial composition and, in turn, gut microbial composition
can have direct effects on human health. The ultimate goal is to
permanently switch off this microbiota-influenced ‘trip switch’

determining metabolic endotoxemia in the host. This may be
ambitious right now, but it is clear that certain strains of bacteria
(and the pharmabiotics they produce) can have very positive
effects on host metabolic health. Although these effects may
seem a small solution to this epidemic, the future development
of probiotics as medicines to treat metabolic disease or indeed
prevent their onset is a promising proposal. The data described
in this review bring us ever closer to discovering an ‘antiobese
microbiota’, one that could prevent this obesity epidemic from
polluting future global health.

Main messages

▸ While the gut microbiota is unique and essential for
development, its composition can be influenced by many
factors including health status and environment.

▸ ‘Pharmabiotics’ are bioactive microbial metabolites that
confer a health benefit to the host.

▸ The gut microbiota are a modifiable target with the
potential to progress or prevent the development of the
metabolic syndrome.

Current research questions

▸ Can we eat ourselves healthy by feeding specific gut
microbes?

▸ Is it possible to transplant a healthful ‘lean-microbiota’ to an
obese host with the effect of alleviating symptoms of the
metabolic syndrome?

▸ Can specific strains of bacteria be used as future therapies
against diabetes or could potential disease-provoking strains
be knocked out of the gut microbial ecosystem?
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Self assessment questions

Please answer true or false to the below.

1. Metabolic endotoxemia is characterised by excess
lipopolysaccharide in the blood.

2. The endocannabinoid system is comprised of an array of
signalling peptides.

3. Akkermansia can improve host insulin resistance in mice.
4. The pharmabiotic γ-aminobutyric acid functions as an

excitatory neurotransmitter in the central nervous system.
5. Prebiotics are live microorganisms that may offer a

therapeutic means of managing metabolic health.
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