Acute and chronic arsenic toxicity

R N Ratnaike

Arsenic toxicity is a global health problem affecting many millions of people. Contamination is caused by arsenic from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Arsenic is present as a contaminant in many traditional remedies. Arsenic trioxide is now used to treat acute promyelocytic leukaemia. Absorption occurs predominantly from ingestion from the small intestine, though minimal absorption occurs from skin contact and inhalation. Arsenic exerts its toxicity by inactivating up to 200 enzymes, especially those involved in cellular energy pathways and DNA synthesis and repair. Acute arsenic poisoning is associated initially with nausea, vomiting, abdominal pain, and severe diarrhoea. Encephalopathy and peripheral neuropathy are reported. Chronic arsenic toxicity results in multisystem disease. Arsenic is a well documented human carcinogen affecting numerous organs. There are no evidence based treatment regimens to treat chronic arsenic poisoning but antioxidants have been advocated, though benefit is not proven. The focus of management is to reduce arsenic ingestion from drinking water and there is increasing emphasis on using alternative supplies of water.

Arsenic is one of the most toxic metals derived from the natural environment. The major cause of human arsenic toxicity is from contamination of drinking water from natural geological sources rather than from mining, smelting, or agricultural sources (pesticides or fertilisers). Many industrialised and less industrialised countries have drinking water contaminated with arsenic. The problem is of major concern in the USA—for example, the arsenic content of drinking water from public and private sources in Millard County ranges from 14 parts per billion (ppb) to 166 ppb. The Environment Protection Agency lowered the permissible level of arsenic in drinking water in the USA in 2001 from 50 ppb to 10 ppb. Prolonged ingestion of water contaminated with arsenic may result in the manifestations of toxicity in practically all systems of the body as subsequently discussed. The most serious concern is the potential of arsenic to act as a carcinogen.

The two worst affected areas in the world are Bangladesh and West Bengal, India. In 42 districts in southern Bangladesh and in nine adjacent districts in West Bengal, 79.9 million and 42.7 million people respectively are exposed to groundwater arsenic concentrations that are above the World Health Organisation maximum permissible limit of 50 µg/l. In both these areas, the source of arsenic is geological in origin, contaminating aquifers which provide water for over one million tube wells. In West Bengal the arsenic concentration in some tube wells is as high as 3400 µg/l.

The mechanism of arsenic accumulation in the Bengal Delta Plain is thought to have occurred during the late Quaternary age (Holocene age) with arsenic-containing alluvial sediments deposited by the Ganges, Brahmaputra, Meghna, and other smaller rivers that flow across the Bengal Delta Plain into the Bay of Bengal. In the Bengal Delta Plain, the arsenic is adsorbed as arsenic oxyanions onto oxyhydroxides of iron, aluminium, and manganese and then mobilised in the alluvial aquifers where, due to the reducing environment, the oxyhydroxides are dissolved by biogeochemical processes, releasing the arsenic into the groundwater.

Over the centuries, arsenic has been used for a variety of purposes. Arsenic was a constituent in cosmetics, and used more extensively than at present in agriculture to protect crops from pests. Arsenic as copper acetarsenite was a pigment in paints, the best known being “Paris green”. Before electricity was used for illumination, hydrogen liberated from coal fires and from gas for lighting combined with arsenic in the Paris green used in wallpaper to form arsine, a toxic gas. A fungus Scopulariopsis breviculis present in damp wallpaper also metabolised the arsenic in Paris green to arsine.

In industry, arsenic is used to manufacture paints, fungicides, insecticides, pesticides, herbicides, wood preservatives, and cotton desiccants. As it is an essential trace element for some animals, arsenic is an additive in animal feed. Gallium arsenide or aluminium gallium arsenide crystals are components of semiconductors, light emitting diodes, lasers, and a variety of transistors. Arsenic is a popular murder weapon. Many arsenic compounds resemble white sugar and this apparent innocuousness is enhanced by being tasteless and colourless and was publicised by Frank Capra’s film Arsenic and Old Lace, in which two elderly ladies use arsenic in elderberry wine to murder their male suitors.

Abbreviations: AIF, apoptosis-inducing factor; AsO₂⁻/As V, arsenate; AsO₃³⁻/As III, arsenite; ppb, parts per billion; ppm, parts per million
HISTORICAL THERAPEUTIC USES OF ARSENIC
Arsenic was used as a healing agent after Greek physicians such as Hippocrates and Galen popularised its use. Arsenic compounds became available as solutions, tablets, pastes, and in injectable forms. Fowler’s solution, a 1% arsenic trioxide preparation, was widely used during the 19th century. As recently as 1958, the British *Pharmaceutical and Therapeutic Products* handbook edited by Martindale, listed the indications for Fowler’s solution as: leukaemia, skin conditions (psoriasis, dermatitis herpetiformis, and eczema), stomatitis and gingivitis in infants, and Vincent’s angina. Fowler’s solution was also prescribed as a health tonic. Chronic arsenic intoxication from the long-term use of Fowler’s solution caused haemangiosarcoma, angiomyolipoma of the liver,14–18 and nasopharyngeal carcinoma.15 Arsenic was the primary treatment for syphilis until World War II. Arsphenamine (neoarsphenamine), a light yellow compound containing 30% arsenic was used intravenously to treat syphilis, yaws, and some protozoan infections.

CURRENT THERAPEUTIC USES OF ARSENIC
Arsenic trioxide (As2O3) is now widely used to induce remission in patients with acute promyelocytic leukaemia, based on its mechanism as an inducer of apoptosis (programmed cell death).19–21 Arsenic induces apoptosis by releasing an apoptosis-inducing factor (AIF) from the mitochondrial intermembrane space from where it translocates to the cell nucleus.22 AIF then effects apoptosis, resulting in altered nuclear biochemistry, chromatin condensation, DNA fragmentation, and cell death. AIF has been isolated and cloned and is a flavoprotein with a molecular weight of 57 000.23

Arsenic continues to be an essential constituent of many non-western traditional medicine products. Some Chinese traditional medications contain realgar (arsenic sulphide) and are available as pills, tablets, and other preparations. They are used for psoriasis, syphilis, asthma, rheumatism, haemorrhoids, cough and pruritus, and are also prescribed as a health tonic. Chronic arsenic toxicity from the long-term use of Fowler’s solution caused haemangiosarcoma,22 angiomyolipoma of the liver, and Vincent’s angina. Fowler’s solution was also prescribed as a health tonic. Chronic arsenic intoxication from the long-term use of Fowler’s solution caused haemangiosarcoma, angiomyolipoma of the liver, and nasopharyngeal carcinoma. Arsenic was the primary treatment for syphilis until World War II. Arsphenamine (neoarsphenamine), a light yellow compound containing 30% arsenic was used intravenously to treat syphilis, yaws, and some protozoan infections.

ARSENIC EXPOSURE
Arsenic exposure occurs from inhalation, absorption through the skin and, primarily, by ingestion of, for example, contaminated drinking water. Arsenic in food occurs as relatively non-toxic organic compounds (arsenobetaine and arsenocholine). Seafood, fish, and algae are the richest organic sources.24 These organic compounds cause raised arsenic levels in blood but are rapidly excreted unchanged in urine.25,26 Arsenic intake is higher from solid foods than from liquids including drinking water.27–30 Organic and inorganic arsenic compounds may enter the plant food chain from agricultural products or from soil irrigated with arsenic contaminated water.26

ABSORPTION
The major site of absorption is the small intestine by an electrogenic process utilizing a proton (H+) gradient.25–29 The optimal pH for arsenic absorption is 5.0,29 though in the milieu of the small bowel the pH is approximately 7.0 due to pancreatic bicarbonate secretion.29

METABOLISM
The absorbed arsenic undergoes hepatic biomethylation to form monomethylarsonic acid and dimethylarsinic acid that are less toxic but not completely innocuous.29,30 About 50% of the ingested dose may be eliminated in the urine in three to five days. Dimethylarsinic acid is the dominant urinary metabolite (60%–70%) compared with monomethylarsonic acid.25 A small amount of inorganic arsenic is also excreted unchanged. After acute poisoning electrothermal atomic absorption spectrometry studies show that the highest concentration of arsenic is in the kidneys and liver.41 In chronic arsenic ingestion, arsenic accumulates in the liver, kidneys, heart, and lungs and smaller amounts in the muscles, nervous system, gastrointestinal tract, and spleen.42

Though most arsenic is cleared from these sites, residual amounts remain in the keratin-rich tissues, nails, hair, and skin. After about two weeks of ingestion, arsenic is deposited in the hair and nails.

CLINICAL FEATURES
Acute poisoning
Most cases of acute arsenic poisoning occur from accidental ingestion of insecticides or pesticides and less commonly from attempted suicide. Small amounts (<5 mg) result in vomiting and diarrhoea but resolve in 12 hours and treatment is reported not to be necessary.41 The lethal dose of arsenic in acute poisoning ranges from 100 mg to 300 mg.42 The Risk Assessment Information System database states “The acute lethal dose of inorganic arsenic to humans has been estimated to be about 0.6 mg/kg/day.”43 A 23 year old male who ingested 8 g of arsenic survived for eight days.44 A student who consumed 30 g of arsenic sought help after 15 hours and survived 48 hours but died despite gastric lavage and treatment with British anti-lewisite (an arsenic antidote) and haemodialysis.45 Depending on the quantity consumed, death usually occurs within 24 hours to four days.

The clinical features initially invariably relate to the gastrointestinal system and are nausea, vomiting, colicky abdominal
Acidosis has occurred in a single patient and may last for as long as two years. Haematological abnormalities occur and renal failure, respiratory failure, and pulmonary oedema are common. Neurological manifestations include peripheral neuropathy or encephalopathy. Urinary arsenic concentration is the best indicator of recent poisoning (1–2 days).

Box 2: Acute arsenic poisoning
- Clinical features manifest in virtually all body systems.
- Prominent features are nausea, vomiting, colicky abdominal pain, profuse watery diarrhoea, and excessive salivation.
- Other features are acute psychosis, a diffuse skin rash, toxic cardiomyopathy, and seizures.
- Haematological abnormalities occur and renal failure, respiratory failure, and pulmonary oedema are common.
- Neurological manifestations include peripheral neuropathy or encephalopathy.
- Urinary arsenic concentration is the best indicator of recent poisoning (1–2 days).

Diarrhoea attributed to increased permeability of the blood vessels is a dominant feature. The voluminous watery stools are described as “choleraid diarrhoea”. In cholera the stools are described as “rice water”, but in acute arsenic poisoning, because of blood in the gastrointestinal tract, the term “bloody rice water” diarrhoea is used. The cause of death is massive fluid loss due to secretion from the gastrointestinal tract eventuating in severe dehydration, reduced circulating blood volume, and consequent circulatory collapse. On postmortem examination osmethylis, gastritis, and hepatic steatosis are reported.

Haematological abnormalities reported are haemaglobinuria, intravascular coagulation, bone marrow depression, severe pancytopenia, and normocytic normochromic anaemia and basophilic stippling. Renal failure was reported in four of eight sailors exposed to arsenic. Respiratory failure and pulmonary oedema are common features of acute poisoning.

The most frequent neurological manifestation is peripheral neuropathy that may last for as long as two years. The peripheral neuropathy may lead to rapid, severe ascending weakness, similar to Guillain–Barré syndrome, requiring mechanical ventilation. Encephalopathy is a common manifestation and the possibility of arsenic toxicity must be considered if the aetiology of encephalopathy is uncertain. Encephalopathy has occurred after intravenous administration of arsphenamines. The basis for the encephalopathy is thought to be due to haemorrhage.

Metabolic changes with acute arsenic poisoning are reported. Acidosis has occurred in a single patient and hypoglycaemia and hypocalcaemia in cattle. In acute poisoning the best indicator of recent ingestion (1–2 days) is urinary arsenic concentration.

Chronic poisoning
Long term arsenic toxicity leads to multisystem disease and the most serious consequence is malignancy. The clinical features of arsenic toxicity vary between individuals, population groups, and geographic areas. It is unclear what factors determine the occurrence of a particular clinical manifestation or which body system is targeted. Thus in persons exposed to chronic arsenic poisoning, a wide range of clinical features are common. The onset is insidious with non-specific symptoms of abdominal pain, diarrhoea, and sore throat.

Skin
Numerous skin changes occur with long term exposure. Dermatological changes are a common feature and the initial clinical diagnosis is often based on hyperpigmentation, palmar and solar keratosis. The keratosis may appear as a uniform thickening or as discrete nodules. It is emphasised that both palmar and solar keratosis are a significant diagnostic criterion. Hyperpigmentation occurs as diffuse dark brown spots, or less discrete diffuse darkening of the skin, or has a characteristic “rain drop” appearance. Arsenic associated skin cancer, Bowen’s disease, is an uncommon manifestation in Asians and may be due to the high skin melanin content and increased exposure to ultraviolet radiation. Arsenic may cause a basal cell carcinoma in a non-melanin pigmented skin. The latent period after exposure may be as long as 60 years and has been reported in patients treated with Fowler’s solution, in sheep dip workers, in vineyard workers using arsenical pesticides, and from drinking contaminated wine. Another manifestation due to arsenic deposition in keratin-rich areas are prominent transverse white lines in the fingernails and toenails called Mee’s lines.

Large population based studies from West Bengal in India show a relationship between arsenic concentration in tube well water, dose per body weight, and hyperpigmentation and keratosis, and that persons with a poor nutritional status were more susceptible. However the study by Smith et al reports that arsenic induced skin lesions occur among Atacameño people in northern Chile, despite a good nutritional status.

These subjects in Chiu Chiu village were from an area “famous” for its cultivation of carrots and other vegetables. The arsenic content of the food consumed was not measured to determine if arsenic in the food chain perhaps “nullified” the nutritional benefits of the foods consumed.

Gastrointestinal system
Though diarrhoea is a major and early onset symptom in acute arsenic poisoning, in chronic toxicity diarrhoea occurs in recurrent bouts and may be associated with vomiting. Suspicion of arsenic ingestion should be aroused if other manifestations such as skin changes and a neuropathy are also present.

In 248 patients with evidence of chronic arsenic toxicity from West Bengal, India who consumed arsenic contaminated drinking water for one to 15 years, hepatomegaly occurred in 76.6%, and of the 69 who were biopsied, 63 (91.3%) showed non-cirrhotic portal fibrosis. In another study, arsenic was considered the aetiological agent in five of 42 patients with incomplete septal cirrhosis, an inactive form of macronodular cirrhosis, characterised by slender, incomplete septa that demarcate inconspicuous nodules, and an unusually high incidence of varical bleeding.

Cardiovascular system
Increased risk of cardiovascular disease is reported in smelter workers due to arsenic exposure.

In a study in Millard
Endocrine and haematological systems
Exposure to high concentrations of arsenic is associated with an increased risk of diabetes mellitus. In chronic arsenic toxicity neutropenia occurs.

Malignant disease
The relationship between arsenic and malignancy is of growing concern as many millions of people are potential victims. In Bangladesh and India arsenic is associated with skin, lung, liver, kidney, and bladder cancers. There is evidence from other countries that arsenic exposure causes malignancies of the skin, lung, liver, kidney, and bladder. Data from Taiwan also documents malignancies of the bladder, kidney, skin, lung, nasal cavity, bone, liver, larynx, colon, and stomach as well as lymphoma.

The mechanisms, though not fully determined, are possibly an adverse affect on DNA repair, methylation of DNA, and increased free radical formation and activation of the proto-oncogene c-myc. Arsenic may act as a co-carcinogen, tumour promoter, or tumour progressor under certain circumstances. High levels of arsenic are teratogenic in animals. Structural chromosome aberrations were studied in a group of individuals who consumed arsenic from well water in Finland and the association was stronger in current users than in the 10 subjects who had stopped using the contaminated well water for 2–4 months before sampling.

DIAGNOSIS
Analyses of blood, urine, and hair samples are used to quantify and monitor exposure. Levels between 0.1 and 0.5 mg/kg on a hair sample indicate chronic poisoning while 1.0 to 3.0 mg/kg indicates acute poisoning.

ARSENIC DEFICIENCY
In animals deficiency is manifest as increased mortality, reduced fertility, increased spontaneous abortion rate, low birth weight in offspring, and damage to red blood cells.

ECONOMIC COSTS OF CONTAMINATION
The economic significance of arsenic toxicity includes medical expenses, income loss, and reduced crop productivity and quality due to soil and water contamination. The current health, economic, and nutritional problems would be greatly compounded when information regarding arsenic contamination of the food chain is better known and if agricultural products and livestock are found to be contaminated. These issues are of serious concern particularly in Bangladesh where 97% of the rural population relies on ground water for drinking, cooking, and irrigation.

PREVENTION, MANAGEMENT, AND FUTURE DIRECTIONS
The human tragedy due to arsenic toxicity is most acute in the developing world where in countries such as Bangladesh the lives of millions of people are affected.

In solving the increasing problem of arsenic contamination and ill health, many issues need to be clarified. Information is required to determine if there is a threshold for carcinogenic effects to manifest and also to define the dose and duration of exposure. Studies are required to link toxic manifestations with possible genetic polymorphism, age, gender, nutritional status, and the protective role of vitamins, minerals, and antioxidants. There is a marked variation in clinical features among individuals in the same household as is commonly seen in Bangladesh. This may be due to “slow” or “fast” methylators of arsenic similar to patients with inflammatory bowel disease who are “slow” or “fast” acetylators who therefore respond differently to treatment with salicylate.

The provision of safe drinking water is a priority. A variety of methods of diverse complexity are available to remove arsenic from drinking water. The methodology, especially in...
developing countries, that is urgently required should be affordable, sustainable by the population, and cost effective. Among the methods available for removing arsenic from water are processes of precipitation or ion exchange. Filtration of arsenic from tube wells has spawned a range of filters of various technologies. The cheapest solution would depend on community goodwill and the availability is to harvest rain water and harness surface water. In eastern areas of the country receiving 3500 mm. The option of Bangladesh has an annual rainfall of 1500–2000 mm with sand was the most effective compound. Such as iron treated activated carbon, iron treated gel beads, and iron oxide coated sand, and of these iron oxide coated sand was the most effective compound. The Stevens technology for arsenic removal is inexpensive and involves mixing a small packet of powder containing iron sulphate and calcium hydroxide in a large bucket of water, which is then filtered through several cm of sand.67

One attractive and inexpensive option that is widely available is to harvest rain water and harness surface water. In Bangladesh the volume of water that flows into the Bay of Bengal is second only to that flowing into the Amazon basin. Bangladesh has an annual rainfall of 1500–2000 mm with eastern areas of the country receiving 3500 mm. The option of harnessing this natural wealth of Bangladesh has received, from available published data, insufficient attention. However, the cheapest solution would depend on community goodwill encouraging the use of a neighbour’s well (well sharing) that is not contaminated. More than 90% of people in Bangladesh live within 200 m of a clean, safe source of well water.68

No treatment of proven benefit is currently available to treat chronic arsenic toxicity. Treatment options advocated are vitamin and mineral supplements and antioxidant therapy. The benefits of these treatment measures need to be evidenced based to receive endorsement and wider application.

At a cellular level, in view of the apoptotic mechanism of action of arsenic, the effects, especially of antioxidants are theoretically of value. However the benefits of these compounds at cellular level need validation in human subjects with chronic arsenic toxicity. At present, in chronic poisoning, therapy is limited to supportive measures.

ACKNOWLEDGEMENT
Mr Eugene Y Ngi and Mr Chris Senior clarified a number of issues for which I am grateful. I also thank Mr Austin Milton and Mrs Mary Denys for work on the manuscript.
The author is Associate Professor of Medicine at the University of Adelaide.

QUESTIONS (TRUE (T)/FALSE (F); ANSWERS AT END OF REFERENCES)
Q1. The main source of arsenic that contaminates drinking water is from industrial sources such as mining.
Q2. In chronic arsenic poisoning the diagnostic pigmentary changes occur only in the palms and not the soles of the feet.
Q3. The central nervous system manifestations of chronic arsenic toxicity include cerebral infarction, changes in behaviour, confusion, and memory loss.
Q4. In regard to cardiovascular system manifestations, arsenic may cause direct myocardial injury, cardiac arrhythmias, cardiomyopathy, and invariably peripheral vascular disease.
Q5. Arsenic induces apoptosis by releasing an apoptosis-inducing factor from the mitochondrial intermembrane space.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

3.1. The relationship between metal intake and health outcomes is complex and varies depending on the specific metal, route of exposure, and individual characteristics. For example, while high levels of arsenic in drinking water have been associated with skin lesions and soft tissue tumors in certain populations, lower levels of exposure have been linked to increased risk of cardiovascular disease and cancer in others.

4. The use of arsenic as a pesticide in Asia has led to high levels of arsenic in the environment and in the diets of some rural populations. This has resulted in widespread exposure to arsenic in the general population, with significant health effects.

5. The World Health Organization (WHO) has established arsenic as a carcinogen and has set maximum limits for arsenic in drinking water. However, these limits are not always achieved in regions with high arsenic levels in groundwater, leading to continued exposure and health risks.

6. Research has shown that the prevalence of skin lesions among individuals exposed to high levels of arsenic in drinking water is correlated with the duration of exposure and the arsenic concentration in the water. This highlights the importance of early intervention and control measures to mitigate arsenic toxicity.

7. The high prevalence of skin lesions in populations exposed to arsenic in drinking water underscores the need for continued surveillance and public health interventions to address this significant health issue.

8. The use of arsenic in the production of various industrial products, such as wood preservatives and fluxes for the electronics industry, has contributed to widespread exposure, particularly in regions where these products are used extensively.

9. The national human exposure assessment survey (NHEXAS) has provided valuable data on the prevalence of arsenic exposure in different populations, highlighting the need for targeted interventions to reduce exposure.

10. The mechanisms by which arsenic causes toxicity and health effects are complex and not fully understood. Studies have shown that arsenic can affect multiple organ systems, including the skin, liver, and kidneys, leading to a range of health outcomes.

ANSWERS