Classic diseases revisited

Abdominal tuberculosis

V K Kapoor

"The captain of all these men of death that came against him to take him away was the consumption; for it was that that brought him down to grave." John Bunyan, 1628–88

Tuberculosis causes 3 million deaths every year, accounting for 6% of all deaths. It is among the 10 leading causes of death and is one of the commonest causes of death in the young.

Incidence

Tuberculosis is the most important communicable disease world-wide. Despite expectations such as "tuberculosis should be virtually eradicated from most developing countries within 50 years" it has come back with a vengeance and has recently been declared a global emergency by the World Health Organisation. It continues to be prevalent in underdeveloped and developing Third world, and although it was on the verge of eradication in the developed world, its prevalence is increasing there too, due to factors such as transglobal immigration, ageing populations, alcoholism, socio-economic deprivation, and more recently, acquired immunodeficiency syndrome (AIDS). It is estimated that half of the world’s population is infected and about 10 million new cases occur every year.

The abdomen is involved in 11% of patients with extra-pulmonary tuberculosis. In a recent series of 820 patients with tuberculosis reported from Saudi Arabia, 16% had abdominal involvement. Abdominal tuberculosis continues to be common in various parts of the world with large series being reported from Chile, Egypt, India, Iraq, Kuwait, Nigeria, Saudi Arabia and Sudan.

In the UK, pulmonary tuberculosis has declined in incidence but non-pulmonary tuberculosis continues to be common. In 1985, abdominal tuberculosis accounted for 5% of all cases of tuberculosis notified in a district in the UK. The disease was largely under control in the 1950s but revived in the 1960s and 70s and its renaissance in the 1980s and 90s is disturbing. In a District General Hospital in London, Palmer et al reported having seen 90 patients with abdominal tuberculosis during the 10-year period up to 1984; over the same period Crohn’s disease was diagnosed in 102 patients. This may not be typical of all of the country but may reflect experience in areas with a large Asian population. Other large series of abdominal tuberculosis have been reported from areas in the UK with large immigrant populations. Abdominal tuberculosis has also reappeared in the US and is likely to become more common because of AIDS.

Aetiopathogenesis

Abdominal tuberculosis probably occurs due to reactivation of a dormant focus. This primary gastrointestinal focus is established as a result of haematogenous spread from a pulmonary focus acquired during primary infection in childhood. It may also be caused by swallowed bacilli which pass through the Peyer’s patches of the intestinal mucosa and are transported by macrophages through the lymphatics to the mesenteric lymph nodes, where they remain dormant.

Suppression of host defences by conditions such as malnutrition, weight loss, alcoholism, diabetes, chronic renal failure, immunosuppression, AIDS, etc, increases the risk of such reactivation. Ingestion of bacilli from an active pulmonary focus, haematogenous spread from active tuberculosis in other organs, and direct extension from adjacent organs are other possible mechanisms of involvement of the abdomen. Ingestion of infected milk is rarely a cause because of disappearance of bovine tuberculosis and pasteurisation of milk in the West and the practice of boiling milk before consumption in the developing countries. Most bacilli isolated in patients with abdominal tuberculosis are Mycobacterium tuberculosis and not Mycobacterium bovis.
Extrapulmonary disease is more common in patients with AIDS; 50% of AIDS patients with tuberculosis have extrapulmonary involvement, compared to only 10–15% of non-HIV tuberculosis patients. The diagnosis of tuberculosis may precede the diagnosis of AIDS by several months; tuberculosis frequently disseminates in AIDS patients, progresses rapidly and is associated with a high mortality. Treatment of tuberculosis in AIDS patients is the same as in non-HIV infected patients but multi-drug-resistant tuberculosis is more common in patients with AIDS.

Pathology

Abdominal tuberculosis denotes involvement of the gastrointestinal tract, peritoneum, lymph nodes, and solid visera, eg, liver, spleen, pancreas, etc. The gastrointestinal tract is involved in 65% to 78% of patients; associated peritoneal and lymph node involvement is common in these patients. The common sites of involvement in the gastrointestinal tract are the ileum followed by the colon and the jejunum. In 196 patients with gastrointestinal tuberculosis, the ileum was involved in 102 and caecum in 100 patients. In another series of 300 patients, however, the ileocaecal region was involved in 162 and the ileum in only 89 patients. Three types of intestinal lesions are commonly seen – ulcerative, stricturous, and hypertrophic, cicatricial healing of the ulcerative lesions resulting in strictures. Oclusive arterial changes may produce ischaemia and contribute to development of strictures. These morphological types can coexist, eg, ulcero-constrictive and ulcero-hypertrophic lesions. Small intestinal lesions are usually ulcerative or stricturous and large intestinal lesions are ulcero-hypertrophic. Colon lesions are usually associated with ileocaecal or ileal involvement but isolated segmental colonic tuberculosis does occur. Some patients have involvement of peritoneum and lymph nodes alone without involvement of the gastrointestinal tract. Peritoneal involvement may be either an ascitic or adhesive (plastic) type. The lymph nodes in the small bowel mesentery and the retroperitoneum are commonly involved, and these may caseate and calcify. Disseminated abdominal tuberculosis involving the gastrointestinal tract, peritoneum, lymph nodes and solid visera has also been described. Chen et al reported disseminated involvement of the abdomen in 21 out of 60 patients with large bowel tuberculosis, while most of the 96 patients with tuberculous hepatitis reported by Essop et al had disseminated disease. Multiple lesions are common. Bhansali reported that small intestinal strictures were multiple in 71 out of 119 patients; as many as 12, 16, and 19 strictures have been reported in a single patient.

Clinical features

Abdominal tuberculosis can occur at any age but is predominantly a disease of young adults; two-thirds of patients are 21–40 years old and the mean age of patients is 30–40 years. The mean age of white patients is higher – 56 years. Although some reports mention a higher incidence in females, it seems that the disease affects both sexes equally. Abdominal tuberculosis is also seen in children, where the spectrum of disease is different from that in adults; 90% of child patients have peritoneal and lymph node involvement, intestinal lesions being present in less than 10% of cases.

Abdominal tuberculosis is characterised by different modes of presentation, ie, chronic, acute and acute-on-chronic, or it may be an incidental finding at laparotomy for other diseases; incidental abdominal tuberculosis is usually peritoneal and lymph nodal. The clinical presentation depends upon the site and type of involvement (table 1). Bhansali observed frank malabsorption in 21% of patients, while Tandon et al reported biochemical evidence of malabsorption in 75% of patients with intestinal obstruction and 40% of those without it. The lump in patients with abdominal tuberculosis is firm, mobile and only slightly tender. Rectal bleeding has been reported in 4% to 6% of patients; massive lower gastrointestinal bleeding is rare. Subacute intestinal obstruction is described as colicky abdominal pain, distension, vomiting, gurgling, feeling of a ball of wind moving in the abdomen, and visible loops and peristalsis; these symptoms are relieved spontaneously after passage of flatus. Ano-rectal tuberculosis presents as stricture, fistula-in-ano, fissure-in-ano. Tubercular fistulae are usually multiple; as many as 12 out of 15 multiple fistulae but only four out of 61 single peri-anal fistulae were tubercular.

Gastrointestinal tuberculosis may present as peptic ulcer with or without gastric outlet obstruction or perforation and may mimic carcinoma. Short duration of history, early onset of obstruction, bizarre endoscopic findings, and non-response to H2-receptor antagonists in a patient with a diagnosis of peptic...
ulcer should arouse the suspicion of gastroduodenal tuberculosis. Microscopic involvement of the liver is common in patients with abdominal tuberculosis but isolated focal lesions (tuberculoma) are rare. Tuberculosis at unusual sites mimics more common diseases in those organs, e.g., oesophagus – carcinoma, pancreas – carcinoma,1 pancreatitis,1 and abscess.12

Varying grades of tenderness and guarding may be present in patients with ascitic peritoneal tuberculosis but board-like rigidity or rebound tenderness as seen in pyogenic peritonitis is absent. Loculation of the ascitic fluid may result in a soft cystic lump. Involvement of the mesentric lymph nodes produces a lump in the central abdomen. Enlarged lymph nodes at the root of the mesentery may cause obstruction to the third part of the duodenum.15 Portal hypertension due to portal vein compression and obstructive jaundice due to compression of the common bile duct due to tuberculous nodes, have been reported.16

Systemic manifestations of tuberculous infection include low-grade fever with evening rise, lethargy, malaise, night sweats, anorexia and weight loss (failure to thrive in children). These are present in about one-third of patients with abdominal tuberculosis and are more frequent in those with ulcerative intestinal lesions and ascitic peritoneal tuberculosis. Some patients, particularly those with miliary tuberculosis, may have tubercular toxemia,17 with high fever, tachycardia, anaemia, and leucocytosis. Tuberculous involvement of other organs or systems has been reported in as many as one-third of patients.12 The commonest sites of involvement are pulmonary and pleural. Genital tract involvement has been reported in 10% of women with abdominal tuberculosis. Peripheral lymph nodes (cervical or axillary) may be involved in 3–10%11 18 19 of patients. A family history of tuberculosis, reported in about one-third of patients in the UK,20 is rarely revealed by patients in India because of the social stigma still attached to the disease.

Tuberculosis is regarded as a disease with insidious onset and chronic presentation, most patients having symptoms for a few weeks to months, sometimes years; Lambrianides et al.17 even stated that tuberculosis is rarely an emergency. Between 15 and 40% of patients16 23 49 may, however, present with an acute abdomen16 (box 1). Intestinal obstruction in tuberculosis is usually chronic/subacute but may be acute-on-chronic (episode of acute obstruction with history of subacute obstruction) or acute (no previous history of obstruction). Perforation has been reported in 8%6 to 12%70 71 of patients; while 19 out of 123 bowel perforations in children were tuberculous.72 Tuberculous perforations are usually single and proximal to a stricture; a previous history of subacute intestinal obstruction and evidence of tuberculosis on chest X-ray suggest the diagnosis.73

Differential diagnosis

Intestinal lesions
- Ulcerative: coeliac disease, tropical sprue, immunoproliferative small intestinal disease, giardial infection6
- Strictures: Crohn's disease, malignancy (adenocarcinoma and lymphoma), ischaemic6
- Hypertrophic: carcinoma caecum, appendicular lump, amoeboma, actinomycosis
- Perforations: typhoid6

Peritoneal
- Ascites: cardiac failure, malnutrition, nephrotic syndrome, cirrhosis
- Tubercles: carcinomatosis6
antitubercular drugs are hepatotoxic and may precipitate hepatic failure in the presence of cirrhosis; sometimes the two conditions may coexist, thus complicating the diagnosis and management.10

Investigations

Haematological tests reveal anaemia, leucocytosis with relative lymphocytosis and raised erythrocyte sedimentation rate (ESR). All the children10 and between 50%11,12 and 80%13 of the adults with abdominal tuberculosis have been found to be anaemic, while ESR was found to be raised in 50%,14 66%,10 and 80%13 23 43 of patients. Hypoalbuminaemia is frequent.10 Serological tests, such as soluble antigen fluorescent antibody and enzyme-linked immunosorbent assay, are prone to give both false-negative (due to immune non-response) and false-positive (due to latent tuberculous infection) results, and can only suggest the probable diagnosis of tuberculosis.83 84 Anti-cord factor antibodies have been found to be of use in rapid diagnosis of intestinal tuberculosis and its differentiation from Crohn’s disease.85 Tuberculin test (Mantoux or Heaf) was positive in a majority of patients86 but is of limited value as a diagnostic tool because it does not differentiate between active disease and previous sensitisation by contact or vaccination.

Radiological investigations are the mainstay of diagnosis of abdominal tuberculosis.86 Homan et al86 observed that a normal chest X-ray excludes a diagnosis of abdominal tuberculosis but chest X-ray is positive in only 25% of patients.11 49 While findings of tuberculosis (active or healed) on chest X-ray (figure 1) support the diagnosis of abdominal tuberculosis, a normal chest X-ray does not rule it out. In Prakash’s11 series of 300 patients, no patient had active pulmonary tuberculosis but 39% had evidence of healed tuberculosis on X-ray. Chest X-ray is more likely to be positive for tuberculosis in patients with ulcerative intestinal and ascitic peritoneal types and those with acute complications.

Abdominal X-rays may show dilated intestinal loops and air fluid levels (figure 2), even in the absence of clinical intestinal obstruction,10 11 50 calcified lymph nodes (figure 3), enteroliths and ascites. The radiological findings on small bowel enema are mucosal irregularity and rapid emptying (ulcerative), flocculation and fragmentation (malabsorption), dilated loops and stricture (figures 4 and 5), displaced loops (enlarged lymph nodes) and adherent fixed loops (adhesive peritoneal disease).

Double-contrast barium enema in ileocaecal tuberculosis shows a shortened ascending colon, deformed (irregular, shortened, narrowed) caecum, deformed and incompetent ileocaecal valve, dilated ileum, and a distorted ileocaecal junction with increased (obtuse) ileocaecal angle (figure 6).87 Barium studies are sensitive for ileocaecal and colonic lesions89 (figure 7) but small bowel strictures may be missed and extra-intestinal lesions (peritoneal and lymph nodes) may be
misinterpreted as intestinal strictures or vice versa. Tandon et al. reported false-negative barium studies in 25% of patients. Radiological studies may not always differentiate tuberculosis from Crohn's disease and malignancy.

Imaging has recently been used in the diagnosis of abdominal tuberculosis. Ultrasonography shows ascites, enlarged lymph nodes and hypertrophic intestinal lesions. Ultrasound-guided ascitic tap or fine needle aspiration cytology (FNAC) from the lymph nodes or the hypertrophic intestinal lesions may be performed. Computed tomography (CT) shows adherent bowel loops, thickened omentum with irregular soft tissue densities, caseated lymph nodes (low-density centre with high-density rim) (figure 8) and has been found to be of use both in the diagnosis of tuberculous peritonitis and in differentiating it from peritoneal carcinomatosis.

Endoscopic appearances in tuberculosis include hyperaemic nodular friable mucosa, irregular ulcers with sharply defined margins and undermined edges, pseudopolyps and cobblestoning, and may mimic Crohn's disease and malignancy. Endoscopic biopsy may not reveal granulomas in all cases, as the lesions are submucosal; biopsies from the edges and the base of the ulcer, multiple biopsies at the same site and endoscopic FNAC may increase the yield. Although acid-fast bacilli were not seen in any case, Vij et al. reported positive cultures in more than 40% of endoscopic biopsy specimens. Endoscopic biopsy specimens may be subjected to polymerase chain reaction for detection of acid-fast bacilli. In patients with ascites, peritoneal tap reveals straw-coloured fluid with proteins > 30 g/l, cells more than 1000/μl (predominantly lymphocytes), ascitic/ blood glucose ratio of less than 0.96, and adenosine deaminase levels > 33 U/l. Acid-fast bacilli are rarely seen on smear but may be cultured from the ascitic fluid; yield may be increased to more than 80% by culturing a litre of fluid concentrated by centrifugation. Blind percutaneous needle biopsy, laparoscopic biopsy or small incision open peritoneal biopsy under local anaesthesia may be helpful in the ascitic type but should be avoided in the adhesive type of peritoneal tuberculosis. Ultrasound and CT may be helpful in selecting cases suitable for needle biopsy/ laparoscopy by showing presence of ascites and absence of parietal adhesions. Liver biopsy may be useful in patients with systemic symptoms. Stool and gastric aspirate are rarely positive for acid-fast bacilli in patients with abdominal tuberculosis.

Microbiological diagnosis of abdominal tuberculosis is difficult; the yield of organisms from abdominal lesions is low because extrapulmonary disease is paucibacillary. Acid-fast bacilli were seen on histological examination by Ziehl Nielson staining in only 6–8% of patients. The diagnosis of abdominal tuberculosis is therefore mainly histological – epitheloid cell granulomas with Langhan's giant cells, peripheral rim of lymphocytes and plasma cells, and central caseation necrosis. Non-caseating granulomas, as seen in Crohn's disease, may be present in tuberculosis due to low virulence of organisms and increased host resistance. Mycobacterial culture should be performed in all cases (although results take 6 weeks) because it may be positive even in the absence of a characteristic histological picture.

Pre-operative diagnosis is difficult even in areas where tuberculosis is common and was obtained in only 40% to 50% of patients in India, 33% in Kuwait and 25% in the UK. Many reports describe a significant number of patients in whom tuberculosis could not be diagnosed during the life of the patient but was revealed at necropsy. This happens more frequently in the presence of small intestinal strictures which are not amenable to endoscopic or percutaneous biopsy and FNAC, and adhesive peritoneal lesions where ascitic tap or laparoscopic biopsy cannot be performed. Therapeutic trial – starting the patient on anti-tubercular therapy empirically without a definite diagnosis of tuberculosis, is advocated by many authors in such circumstances but we do not recommend it as it may delay the diagnosis and treatment of diseases such as malignancy, lymphoma, and Crohn's disease, which can mimic tuberculosis clinically and even radiologically. Also, anti-tubercular therapy can alter the histological picture in tuberculosis so that the diagnosis cannot be confirmed or refuted at a later date, and it may precipitate intestinal obstruction due to healing by fibrosis and cicatrization, or result in intestinal perforation. Tandon and Prakash observed recrudescence of obstructing symptoms requiring operation in one-third of patients who were put on anti-tubercular therapy. In such circumstances, where clinical suspicion is strong but results of investigations are equivocal, a diagnostic laparotomy may be a safer option as it may allow treatment of intestinal lesions concurrently. Laparotomy is definitely indicated when malignancy cannot be ruled out with certainty.

Operative findings in abdominal tuberculosis include ascites, small white-to-yellow nodules over the visceral and parietal peritoneum (tubercles), adhesions between intestinal loops and to the parietes, calcified or enlarged mesenteric...
lymph nodes (figures 9 and 10) which may show caseation on bisection, infiltrated thickened and rolled up omentum, increased mesenteric fat wrapping the bowel, short and fibrotic strictures (figure 10), and soft to firm hypertrophic lesions (figure 11). The opened specimen shows thickened folds, nodularity, ulceration and fibrosis (figures 12 and 13). In many patients it may not be possible to differentiate tuberculosis from malignancy and Crohn’s disease, even at laparotomy. A frozen section examination may help to confirm or exclude malignancy. A mesenteric lymph node should always be removed for biopsy because granulomas and caseation are more likely to be found in the lymph nodes than in the intestinal lesions.9 103

Management

All patients with abdominal tuberculosis should receive a full course of anti-tubercular therapy. Conventional regimens include anti-tubercular therapy for 12 to 18 months.107 Short-course regimens including ethambutol, rifampicin and isoniazid for 3 months followed by rifampicin and isoniazid for 6 months or pyrazinamide, ethambutol, rifampicin and isoniazid for 2 months followed by rifampicin and isoniazid for 4 months, are effective for abdominal tuberculosis.108 It is important to administer a correct and complete course, as inadequate drugs, dose or duration is the most important cause of emergence of multi-drug-resistant tuberculosis.

As many as 20%109 to 40%110 of patients with abdominal tuberculosis who present with acute abdomen require emergency surgical intervention.111 Acute-on-chronic intestinal obstruction usually responds to conservative management; these patients can then be electively investigated and managed accordingly. Tubercular perforations are usually ileal and are associated with distal strictures; if the two are close to each other the segment should be resected.73 Parikh110 described strictureplasty in such situations – the incision through the stricture encircling the perforation. If they are far apart the perforation may be closed after freshening the edges and the stricture may be resected or treated with strictureplasty.75 In patients with acute tuberculous peritonitis and acute mesenteric lymphadenitis, biopsy alone is performed and the abdomen is closed without drainage.111 Peritoneal toilet should be performed.

Patients with ulcerative intestinal disease and those with peritoneal and lymph node involvement may be treated with anti-tubercular therapy if no complications are present. In patients with peritoneal disease, the addition of steroids may reduce the subsequent complications of adhesions.99 Since most patients with strictures and hypertrophic lesions have obstructions, surgical treatment is recommended.112 However, two recent reports suggest that even obstructing intestinal lesions may be successfully treated with anti-tubercular therapy.104 105 The mean time required for relief of intestinal symptoms was 6 months, although systemic symptoms improved within 2 months. A preoperative 6-week course of anti-tubercular therapy has been recommended in patients who are planned for elective surgery115 but we feel this should be avoided, except in patients with active pulmonary tuberculosis or tubercular toxaemia,106 as it can alter the histological picture, making the diagnosis of tuberculosis difficult.106

Initially, by-pass procedures like entero-enterostomy and ileo-transverse colostomy were performed in patients with abdominal tuberculosis, as any
Table 2 Diagnostic algorithm

<table>
<thead>
<tr>
<th>Predominant clinical presentation</th>
<th>Possible lesions</th>
<th>Site</th>
<th>Type</th>
<th>Suggested investigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intestinal obstruction</td>
<td></td>
<td>Small intestine</td>
<td>Strictures</td>
<td>Small bowel enema</td>
</tr>
<tr>
<td>Lump</td>
<td></td>
<td>Peritoneum</td>
<td>Adhesive</td>
<td>CT</td>
</tr>
<tr>
<td>Lump</td>
<td></td>
<td>Ileocaecal region, colon</td>
<td>Hypertrophic</td>
<td>DCBE, colonoscopy + biopsy</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td></td>
<td>Lymph nodes</td>
<td></td>
<td>US, CT, FNAC</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td></td>
<td>Small intestine</td>
<td>Ulcerative</td>
<td>Small bowel enema, retrograde ileoscopy + biopsy</td>
</tr>
<tr>
<td>Rectal bleeding</td>
<td></td>
<td>Large intestine</td>
<td>Ulcerative</td>
<td>UGIE + biopsy</td>
</tr>
<tr>
<td>Ascites</td>
<td></td>
<td>Peritoneum</td>
<td>Ascitic</td>
<td>Colonoscopy + biopsy</td>
</tr>
</tbody>
</table>

CT - computed tomography; DCBE - double contrast barium enema; FNAC - fine needle aspiration cytology; UGIE - upper gastrointestinal endoscopy; US - ultrasound

Resectional surgery was considered hazardous in the presence of active disease. When adequate anti-tubercular drugs became available, various reports recommended the use of radical procedures, such as right hemicolecotony, in an attempt to eradicate the disease. The recommended surgical procedures for tuberculosis today are conservative; tuberculosis is a systemic disease and cannot be eradicated by surgery alone. Prakash's⁵ series of 300 patients managed between 1959 and 1977 shows the transition from right hemicolecotony, performed in the initial 107 patients, to limited ileocaecal resection, performed in 88 later patients. Resection in tuberculosis is segmental with 5 cm margins; wide excision of the mesentery is as performed in malignant disease is not necessary.⁴⁶ However, if malignancy cannot be ruled out, radical resection should be performed. Strictures are best treated with strictureplasty; long tubular strictures, those with complete obliteration of the lumen, or multiple strictures in a small segment may need resection, while early strictures which are not very tight may be left alone⁴⁶ or dilated through an enterotomy.⁴⁶ Strictureplasty involves opening the bowel by a longitudinal 5–6 cm incision along the anti-mesenteric border centred on the stricture. Edges are trimmed for biopsy⁴⁶ and the incision is closed transversely in two layers. Katariya ^a reported strictureplasty in pyloroduodenal and ileocaecal lesions. A U-anastomosis, such as in the Finney pyloroplasty for intestinal strictures has also been described.⁴⁴ Multiple procedures are often necessary because of the frequency of multiple lesions; Bhansali⁷ reported the need for more than one resection in 19% of patients. By-pass procedures are not preferred to resections as residual disease may cause complications like obstruction, fistulae, and malabsorption due to blind loops. These patients may require re-operation and resection during follow-up.³ Prakash¹⁰ reported on seven patients requiring second stage resection after by-pass procedures. Gastro-jejunostomy⁴⁸ or duodeno-jejunostomy,³ however, may be performed for duodenal obstruction. In some patients with peritoneal tuberculosis, the adhesions are so dense and fibrotic that attempts to lyse them carry a high risk of enterotomy into one of the adherent loops and such attempts should be resisted. Bhansali⁷ reported that in 35 out of 300 patients with abdominal tuberculosis laparotomy alone could be performed. Chen ^a reported nine patients with large bowel tuberculosis in whom only biopsy could be performed.

Postoperative complications include anastomotic leak resulting in a faecal fistula, peritonitis and intra-abdominal sepsis, persistent obstruction, wound infection, and dehiscence.⁴¹ Re-operation may be required during the follow-up for recurrent obstruction due to strictures or adhesions⁵; the incidence of recurrent disease is, however, less than in Crohn's disease.

Table 3 Management

<table>
<thead>
<tr>
<th>Site</th>
<th>Type</th>
<th>Suggested treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any site</td>
<td>Acute abdomen</td>
<td>Emergency surgery</td>
</tr>
<tr>
<td>Intestinal</td>
<td>Ulcerative</td>
<td>ATT</td>
</tr>
<tr>
<td>Peritoneal</td>
<td>Strictures</td>
<td>Strictureplasty, resection</td>
</tr>
<tr>
<td>Lymph nodes</td>
<td>Hypertrophic</td>
<td>Resection</td>
</tr>
<tr>
<td></td>
<td>Ascitic, adhesive</td>
<td>ATT + ? steroids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATT</td>
</tr>
</tbody>
</table>

ATT - antitubercular therapy
Prognosis

Delayed diagnosis and indiscriminate treatment due either to limited experience or poor understanding of the disease are principally responsible for the mortality rate of 4-12%. 11 Several studies have shown that the high mortality is partly due to the associated malnutrition, anaemia and hyperalimentation. Mortality is higher in patients on hunger strike or with advanced complications. 12-14 16-18 Timely diagnosis based on a high index of suspicion in areas and in populations in which tuberculosis is common, an algorithmic diagnostic approach using radiology, imaging and endoscopy (table 2), and management with a judicious combination of anti-tubercular therapy and conservative surgery (table 3), can reduce the mortality of this 'easily curable yet potentially lethal' disease. 19

"The first country to eliminate tuberculosis will be that which regards its problem as a serious enough to the end." Prof Etienne Bernard, Paris

Tuberculosis unfortunately still remains the world's most neglected health crisis.

The author reviewed the subject during a Visiting Professorship to the Academic Department of Surgery at the King's College Hospital, London, on a Commonwealth Fellowship. Acknowledgements are due to Ms Dympna Kelly, Lecturer, Academic Department of Surgery, King's College Hospital, London for her comments on the manuscript.
Abdominal tuberculosis

69 Kapoor VK, Gupta S, Sikora SS, Chottapadhyay TK, Sharma LK. Acute tubercular abdo-

70 Eggelston PC, Deodhar MC, Kumar A. Tubercu-

71 Kakkar A, Aranya RC, Nair SK. Acute perfora-

72 Dhar A, Bagga D, Taneja SB. Perforated tubercu-

73 Kapoor VK, Kripiani AK, Chottapadhyay TK, Sharma LK. Tuberculous perforations of the
small intestine. Indian J Tuber 1986;33:188-
9.

74 Yachha SK, Misra S, Malik AK, Nai B, Mehta S. Spectrum of malabsorption syndrome in north Indian children. Indian J Gastron-

75 Sharma LK, Gupta S, Soin AS, Sikora SS, Kapoor VK. Generalised peritonitis - the tropi-

terol 1996;91:1660-1.

77 Underwood MJ, Thompson MM, Sayers RD, Hall AW. Presentation of abdominal tubercu-
osis to general surgeons. Br J Surg 1992;79:1077-
9.

78 Wala HS, Khafagy AR, al Sayer HM, et al. Peritro-

82 Agudo JM, Pons F, Casasont F, et al. Tubercu-

83 Chawla TC, Sharma A, Kiran U, Bhargava DK, Shriniwas, Tandon BN. Serodiagnosis of intes-
tinal tuberculosis by enzyme immunoassay and soluble antigen fluorescent antibody tests using a saline extracted antigen. Tuber col 1986;87:55-
60.

84 Bhargava DK, Dasarathy S, Shriniwas, Kuswaha AKS, Dhorhe H, Kapoor BML. Evaluation of enzyme-linked immunosorbent assay using mycobacterial saline-extracted anti
gen for the serodiagnosis of abdominal tuberculosis. Am J Gastroenterol 1990;85:105-
8.

85 Kashima K, Oka S, Tabata A, et al. Detection of anti-cord factor antibodies in intestinal tubercu-

86 Lundstedt C, Nyman R, Brismar J, Hugossen

88 Singh MM, Bhargava AN, Jain KP. Tuberculous peritonitis. An evaluation of pathogenetic mechanisms, diagnostic procedures and ther-
apeutic measures. N Engl J Med 1969;281:1091-
4.

89 Sheikh M, Abu Zidan F, Al Hialaly M, Bebb-

9.

91 Liu KW, Chan YL, Tseng R. Childhood abdom-
inal tuberculosis. The role of echo-
guided fine needle aspiration in its manage-

92 Bandiker AA, Fleischmann D, Wiesmayr MN, et al. Updr J Gastroenterol 1990;29:105-

9.

94 Ha HK, Jung JJ, Lee MS, et al. CT differentiation

4.

97 Anand BS, Schneider PB, El-Zaatari FA, Shawar
RM, Claridge JE, Graham D. Diagnostic
				

98 Willatts B. Tuberculous peritonitis: diagnostic signif-

99 Dwivedi M, Misra SP, Misra V, Kumar R. Value of adenosine deaminase estimation in the diagnosis of tuberculous ascites. Am J Gastroen-
terol 1990;85:1123-5.

100 Levine H. Needle biopsy diagnosis of tubercu-
losis peritonitis. Am Rev Respir Dis 1968;97:
889-94.

101 Bhargava DK, Shriniwas, Choppa P, et al. Peri-

104 Anand BS, Nanda R, Sachdev K. Response of tuberculous strictures to anti-tuberculous treat-

110 Parikh AJ. Conservative approach in manage-

112 Kapoor VK, Sharma LK. Abdominal tubercu-

113 Vanderpool DM, O'Leary JP. Primary tubercu-
losis enteritis. Surg Gynecol Obstet 1988;167:
167-73.

114 Jain SK. Tuberculous abdomen with acute man-

115 Lingenfelter T, Zak J, Marks IN, Steyn E, Halkett J, Price SK. Abdominal tuberculosis: still a potentially lethal disease. Am J Gastroen-