Subacute myelopathy caused by spinal venous infarction

C.E. Clarke and W.J. K. Cumming

Department of Neurology, University Hospital of South Manchester, West Didsbury, Manchester, M20 8LR, UK.

Summary: A 44 year old female presented with a subacute myelopathy in association with pelvic venous thrombosis. It is inferred from the temporal relationship of these events that the patient suffered a subacute spinal venous infarction. This is discussed along with the aetiology, anatomical distribution and management of the condition.

Introduction

The syndrome of acute or subacute transverse myelopathy (ATM) was first recognized by Foix & Alajouanine in 1926. Although it has been associated with many conditions, detailed neurophysiological, neuroradiological and pathological investigations have, thus far, failed to advance our knowledge with regard to its aetiology. Early pathological studies identified thrombosis in the spinal venous channels as a possible cause, but confirmation of this at post-mortem has only been documented in 15 patients according to a recent review. The latter authors suggested that subacute and chronic spinal venous infarction may be responsible for spinal cord syndromes which have hitherto been labelled as idiopathic.

We describe a patient in whom a subacute myelopathy developed in association with radiologically proven pelvic venous thrombosis. The possibility of spinal venous infarction in the case is discussed, together with its aetiology, anatomical distribution and treatment.

Case report

A 44 year old female suddenly became aware of paraesthesiae spreading upward from the toes to the level of the groins whilst in the bath. This was associated with considerable pain in the same distribution which she described as having a burning dysesthetic quality. She was unable to get out of the bath because of lower limb weakness and over the next few hours, her legs developed a mottled cyanotic discoulouration.

Over the next few days, the power in her lower limbs gradually improved but she continued to suffer paraesthesiae and pain. Her legs remained slightly discouloured and this became worse if she adopted the upright posture for any length of time. At this stage, bladder and bowel function were normal.

Hypercholesterolaemia had been found several years earlier during the investigation of xanthelasmata but there was no other significant past history. She smoked 30 cigarettes daily but had never received an oral contraceptive preparation and denied any recent period of immobilization.

Examination 15 days after the onset of the illness revealed a spastic paraparesis with diminished spinothalamic sensation to the T12 dermatome with preservation of posterior column function. No abnormalities were found in the upper limbs or cranial nerve territory and higher mental functions were preserved. Both lower limbs had a dusky cyanotic hue but the peripheral pulses were all present and symmetrical. She was in sinus rhythm and normotensive with no vascular or cardiac bruits. Abdominal examination was also unremarkable.

A full blood count, platelet count, erythrocyte sedimentation rate, biochemical profile, thyroid function tests, myeloma and lupus screens and coagulation studies were all within normal limits. Fasting lipids confirmed a Fredrickson type IIb hyperlipidaemia – serum cholesterol 7.6 mmol/l (normal 3.6–7.2) and serum triglyceride 2.3 mmol/l (normal 0.3–1.8). A lumbar puncture produced clear colourless fluid under normal pressure with 10 red blood cells/ml and 3 white blood cells/ml and no bacterial growth. The cerebrospinal fluid protein was 0.47 g/l (normal 0.25–0.45) and glucose 3.3 mmol/l (normal 2.5–5.5).

Radiographic investigations were initiated with lower limb arteriography in view of the vascular picture. This failed to reveal any arterial occlusion and therefore plain radiology of the thoraco-lumbar spine was performed. This demonstrated spina bifida occulta at L5 but pan-myelography did not locate any

Correspondence: W. J. K. Cumming B.Sc., M.D., F.R.C.P.I. Accepted: 11 February 1987

© The Fellowship of Postgraduate Medicine, 1987
myelitis have failed to identify any cases related to venous infarction.4,4

The spinal cord syndrome in our patient arose in association with venographically proven thrombus in the left common femoral and internal iliac veins; myelography, arteriography and cerebro-spinal fluid biochemistry were all normal. Since cyanotic discoloration of the legs was noticed at the outset of the illness, lower limb venous insufficiency must have been present at the onset of cord dysfunction. This suggests a causal link between the myelopathy and the venous abnormality, although when the venogram was performed several weeks later, no thrombus was seen in the inferior vena cava which might have accounted for such an association. We therefore propose that this is a case of subacute spinal venous infarction, whilst recognizing that pathological proof is necessarily lacking at present. Further investigations such as computed tomography or magnetic resonance imaging may have demonstrated swelling and oedema of the spinal cord, but this would not have been specific to a venous aetiology. Spinal angiography may also have failed to confirm our proposition and may have been detrimental, vascular cord syndromes not infrequently occurring as a consequence of the procedure.

With regard to the aetiology of venous thrombosis in this case, none has been established. Possible contributory factors include the hyperlipidaemia and cigarette smoking. Previous reports of venous infarction of the cord have attributed the lesion to conditions such as decompression sickness7 and fibro-collagenous emboli from degenerate inter-vertebral discs.8 However, the most frequent cause appears to be venous thrombosis due to conditions such as sepsis, polycythaemia rubra vera and pancreatic carcinoma.3

The anatomical distribution of infarction in this case is particularly interesting. Both the lateral corticospinal and the spino-thalamic tracts were involved, posterior column functions being preserved. This situation is analogous to that seen in the anterior spinal artery syndrome. Although this condition cannot be ruled out in the present case, it seems more likely that venous thrombosis has occurred in the territory of the anterior spinal vein. Gillilan9 has previously shown that the anterior segment of the spinal cord is drained by the anterior spinal vein in a manner analogous to the anterior spinal artery. It is interesting to compare this with the work of Dopman and colleagues6 who failed to show any clinical effect after inducing thrombosis of the posterior spinal vein of the Rhesus monkey. Yet at necropsy, symmetrical white matter oedema, demyelination and gliosis had occurred in the posterior columns of the treated animals.

Unfortunately, it is not possible to show more...
conclusively that our patient had suffered an episode of venous infarction of the cord. At present, such a diagnosis must remain a clinical one alone, although evidence of other venous abnormalities may suggest the diagnosis as in this case. If a more concrete diagnosis could be made, therapeutic intervention with thrombolytic agents such as streptokinase might be justified in an effort to regain some cord function. The former agents have already proven to be of significant benefit given intravenously in acute myocardial infarction. Also, prophylactic anti-coagulation in these patients may prevent extension or recurrence of thrombosis. We therefore suggest that clinicians maintain a higher index of suspicion for venous abnormalities in patients with idiopathic cord syndromes so as not to miss this therapeutic potential.

Acknowledgements

The authors wish to thank the Department of Medical Illustration, University Hospital of South Manchester for the preparation of the photographic material.

References