Reversibility of acute renal failure in elderly patients with the nephrotic syndrome

Martin Searle, Cyrus Cooper, Jonathan Elliman, Rodney Dathan and Angus Maciver

Departments of Medicine and Pathology, Southampton University Hospitals, Southampton, UK.

Summary: Acute renal failure may occur in the nephrotic syndrome due to minor glomerular changes, especially in the elderly. We describe five cases and review the literature. Previous renal damage due to ischaemia and drugs may be important in pathogenesis. We stress the importance of active management of these cases, as the renal lesions are reversible and recovery can be expected.

Introduction

Acute oliguric renal failure occurring in patients with the nephrotic syndrome due to minor glomerular changes poses an unusual and difficult management problem. There is considerable variation in the natural history of the condition. The glomerular lesion cannot be held to account for the severity of the renal failure and therefore interest has been stimulated in other mechanisms, including toxic and ischaemic tubular damage and renal vein thrombosis.

We describe in detail a patient with this syndrome, together with four other cases identified from our biopsy records. The literature is reviewed and the pathological mechanisms and management are discussed.

Case report

A 77 year old man presented with a 2 week history of ankle oedema and exertional dyspnoea due to the nephrotic syndrome. He had been commenced on frusemide 80 mg/d and spironolactone 75 mg/d 1 week previously. On examination the blood pressure was 170/100 mm Hg with no postural fall. Investigations showed a normal blood count, blood urea 17.1 mmol/l and serum creatinine 233 μmol/l. Urine protein was 21.3 g in 24 h and serum albumin 24 g/l. Liver function and immunological tests were normal. Ultrasound showed a solid mass at the upper pole of the right kidney, confirmed on intravenous urography, which was presumed to be a renal adenocarcinoma. Renal venography demonstrated a tumour venous circulation but the renal veins were patent.

During the first week following admission the dose of frusemide was raised to 160 mg/d but he became oliguric. Intravenous methylprednisolone 1 g on alternate days was given for 10 d without response. Renal biopsy 6 d after admission showed mild mesangial proliferative glomerulonephritis and proximal tubular damage. Electron microscopy showed severe podocyte loss and tubular vacuolation (Figures 1 and 2). No immune proteins were detected.

All drugs were withdrawn and peritoneal dialysis was carried out for 5 d. He tolerated dialysis poorly and remained anuric. A second renal biopsy, 8 d after the first, showed the same glomerular lesion but with less severe tubular changes. Peritoneal dialysis was started for a further 5 d when urine output started to recover and reached 2.5 l/d by 1 month, with a normal serum creatinine.

The diagnosis of renal adenocarcinoma remains a radiological one as, after discussion with the patient, surgery was not carried out.

Discussion

Acute oliguric renal failure occurring during the course of nephrotic syndrome is usually associated with severe disease processes such as crescentic or necrotizing glomerulonephritis and is often irreversible. However, it is also recognized that oliguric renal failure can complicate the nephrotic syndrome in which the glomerular lesion of minimal change or mild mesangial proliferative glomerulonephritis, is not severe enough to explain the change in renal function. Chamberlain et al., (1966) described 9 patients with
idiopathic nephrotic syndrome who developed renal failure, of whom 4 had minor glomerular changes. The subsequent literature describes a total of 36 cases (Table I) in which there has been considerable variation in outcome. Renal failure was reversible in 22 (61%) with a period of oliguria for 1 week to 6 months. Renal death occurred in 13 (37%) patients.

A review of our own renal biopsy records over a 10 year period revealed four other cases (Table II). Minimal change nephritis was present in two and mild mesangial proliferative nephritis in two. Peritoneal dialysis was required in two patients but one, not so treated because of his age and reluctance, died. It was the striking and dominant tubular damage present in his post-mortem renal tissue that prompted us to be more aggressive in the case described above.

The pathogenesis of acute renal failure in these patients is unclear. Hypovolaemia must always be excluded by clinical examination at presentation and throughout treatment with diuretics, the urea/creatinine ratio may be a useful laboratory aid in this (Koppel & Coburn, 1974). Hypovolaemia was not thought to be present in any of the cases reviewed. Renal vein thrombosis is not uncommon in the nephrotic syndrome (Llach et al., 1977) and is another cause of renal failure. It was excluded by venography in all our patients except no. 4. However, it is interesting that despite negative venography, two patients (nos. 3 and 5), had histological evidence of intrarenal venous thrombosis affecting small vessels. This pathogenetic mechanism should be looked for and treated appropriately when recognized.

It has been proposed that acute renal failure is more likely to occur in nephrotic kidneys made ischaemic by hypertension and atherosclerosis (Espirza et al., 1981). We therefore note that our patients were elderly (range 58–83 y), 2 were known to be hypertensive and 3 had been on substantial doses of analgesics and/or non-steroidal anti-inflammatory drugs for years (Table II). These agents are known to affect intrarenal blood flow via action on prostaglandin synthesis (Steward et al., 1982). We were concerned

Table I Review of 36 cases of acute renal failure associated with the nephrotic syndrome due to minimal glomerular lesions

<table>
<thead>
<tr>
<th>Author</th>
<th>No. of cases</th>
<th>No. achieving full recovery</th>
<th>Duration of support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamberlain et al., 1966</td>
<td>4</td>
<td>2</td>
<td>1–4 months</td>
</tr>
<tr>
<td>Connolly et al., 1968</td>
<td>3</td>
<td>3</td>
<td>1–4 weeks</td>
</tr>
<tr>
<td>Raij et al., 1976</td>
<td>5</td>
<td>0</td>
<td>No recovery</td>
</tr>
<tr>
<td>Rose et al., 1978</td>
<td>1</td>
<td>1</td>
<td>Not stated</td>
</tr>
<tr>
<td>Lowenstein et al., 1978</td>
<td>14</td>
<td>10</td>
<td>Not stated</td>
</tr>
<tr>
<td>Hulter & Bonner 1980</td>
<td>1</td>
<td>0</td>
<td>5 weeks</td>
</tr>
<tr>
<td>Esparza et al., 1981</td>
<td>4</td>
<td>4</td>
<td>4–8 weeks</td>
</tr>
<tr>
<td>Imbasciati et al., 1981</td>
<td>4</td>
<td>2</td>
<td>3–6 months</td>
</tr>
</tbody>
</table>
Table II Review of 5 Southampton patients with acute renal failure complicating the nephrotic syndrome due to minor glomerular lesions

<table>
<thead>
<tr>
<th>No.</th>
<th>Age</th>
<th>Sex</th>
<th>Drug history</th>
<th>Creatinine* µmol/l</th>
<th>Albumin* g/l</th>
<th>Proteinuria* g/24 h</th>
<th>Histology</th>
<th>Creatinine maximum</th>
<th>Creatinine to normal (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>77</td>
<td>M</td>
<td>Fr/Spironolactone</td>
<td>233</td>
<td>24</td>
<td>21.3</td>
<td>MP/TD</td>
<td>1200</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>58</td>
<td>M</td>
<td>A for OA 15 y</td>
<td>301</td>
<td>29</td>
<td>6.2</td>
<td>MC/TD</td>
<td>850</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>F</td>
<td>A/NSAI for OA 19 y</td>
<td>165</td>
<td>23</td>
<td>12.0</td>
<td>MP/TD/RVT</td>
<td>784</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>75</td>
<td>F</td>
<td>A/NSAI for OA 16 y</td>
<td>802</td>
<td>26</td>
<td>5.7</td>
<td>MC/TD</td>
<td>958</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>83</td>
<td>M</td>
<td>Untreated hypertension</td>
<td>181</td>
<td>26</td>
<td>5.8</td>
<td>MP/TD/RVT</td>
<td>1700</td>
<td>Died</td>
</tr>
</tbody>
</table>

*On admission; Fr = frusemide; S = steroids; A = analgesics; OA = osteoarthritis; NSAI = non-steroidal anti-inflammatory drug; RVT = intra renal venous thrombosis; MP = mesangial proliferation; MC = Minimal change; TD = tubular damage.

that in 2 patients (nos. 1 and 5) prior treatment of the nephrotic state with frusemide may have had an adverse effect on renal function due to direct tubular toxicity rather than hypovolaemia or interstitial nephritis.

Other mechanisms proposed include redistribution of intrarenal blood flow due to changes in the renin-angiotensin system (Esparza et al., 1981; Navar & Rosivall, 1984) and also tubular obstruction and toxicity due to proteinaceous casts (Imbasciati et al., 1981; Coward et al., 1984) as in myeloma.

The avidity with which the myeloma protein binds to tubular epithelium may be charge dependent and influence toxicity and obstruction (Smolens et al., 1983). It would be of interest to carry out isoelectric focusing of the urinary protein in the patients discussed here. It has been recently suggested that fall in glomerular filtration rate is due to foot process structural changes (Bohman et al., 1984). Finally an allergic interstitial nephritis may occur and be revealed by renal biopsy (Lyons et al., 1973).

We conclude that hypovolaemia and renal vein thrombosis should be excluded in patients with acute renal failure complicating the nephrotic syndrome. All drugs should then be withdrawn and a renal biopsy carried out. If only minor glomerular changes are present, we recommend that, even in the elderly, treatment should be active and include peritoneal dialysis if necessary, as the renal changes are reversible and recovery of renal function is to be expected. Steroids should be given for minimal change nephropathy as is usual practice, but will not affect the duration of renal failure.

We believe that intrarenal venous thrombosis and prior renal ischaemia due to hypertension and non-steroidal anti-inflammatory drugs are important aetiological factors.

Acknowledgements

Our thanks are due to Dr R.G. Moore for allowing us to report a patient under his care and to Wendy Hudson for help in preparing the manuscript.
References

