Response to thyrotrophin-releasing hormone in atrial dysrhythmias

C. Symons
M.D., F.R.C.P.

D. Kingstone
H.N.C.

A. Myers
M.B., M.R.C.P.

M. Boss
B.Sc.

Departments of Cardiology and Endocrinology, The Royal Free Hospital, London NW3 2QG

Summary
Seventy-eight clinically euthyroid patients with atrial dysrhythmias, either established or paroxysmal, and sixty-three patients in sinus rhythm with coronary disease were screened for hyperthyroidism using thyroid function tests including the thyroid-stimulating hormone (TSH) response to thyrotrophin-releasing hormone (TRH). All had normal levels of serum thyroxine (T4) apart from three with dysrhythmias who were found to have hyperthyroidism. Twenty per cent of patients with atrial dysrhythmias and 10% of those in sinus rhythm had exaggerated TSH response to TRH. Thirty-six per cent of patients with an exaggerated response of TSH to TRH had significant titres of thyroid auto-antibodies compared with 15% with positive antibodies in those with normal TSH response to TRH. Auto-immune thyroid disease may be more closely related to heart disease than has previously been recognized. Rapid atrial dysrhythmias may occur in the presence of a normal serum thyroxine, high levels of TSH and positive thyroid antibodies.

Introduction
Thyrotoxicosis is a well recognized cause of atrial dysrhythmias but frequently the endocrine component may not be clinically evident (Symons, Richardson and Wood, 1971); thus, a remediable cause of cardiac disability may go unrecognized. The results are now reported of screening a group of euthyroid patients with cardiac disorder, using thyroid function tests including the thyroid-stimulating hormone (TSH) response to thyrotrophin releasing hormone (TRH) (Ormston et al., 1971; Birk Lauridsen et al., 1974).

Patients and methods
Three groups of clinically euthyroid patients were studied over a period of approximately 2 years. The first group comprised fifty patients who were known to have had atrial fibrillation for at least one year before this study. There were fourteen with rheumatic heart disease, six with ischaemia due to coronary artery disease and thirty with idiopathic atrial fibrillation. In those with idiopathic fibrillation, although the dysrhythmia was probably due to some form of cardiac ischaemia, there was no symptomatic or electrocardiographic evidence of coronary disease. The second group of twenty-eight patients were known to have had at least one proved attack of atrial dysrhythmia (atrial fibrillation, flutter or tachycardia); there were two with rheumatic heart disease, five with ischaemia due to coronary disease, and twenty-one with idiopathic atrial fibrillation without evidence of coronary artery disease. The third group of sixty-three patients were in sinus rhythm without history of dysrhythmia (initially conceived as a control series) but who had long-standing coronary artery disease. No one with acute cardiac ischaemia was studied.

Because of the preponderance of elderly females in the first two groups, after the first twenty-five in group three, male subjects were excluded. This resulted in those thirty-two male patients being added to the series either as they attended our patient clinics or were admitted. Conventional cardiac and general investigations were carried out as indicated (chest X-rays, electrocardiograms, echo-cardiograms). Those with a history of thyroid disorder and any who had an enlarged thyroid gland were excluded. The following tests of thyroid function were carried out on each patient:

1. Serum thyroxine (T4) measured by radioimmunoassay (RAI) (mean T4=91 nmol/l, normal range 58 – 128 nmol/l).

TABLE 1. Age and sex of patients in groups 1–3

<table>
<thead>
<tr>
<th>Group</th>
<th>Male</th>
<th>Female</th>
<th>Mean age (years)</th>
<th>Range (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18 (35%)</td>
<td>32 (65%)</td>
<td>64</td>
<td>40–80</td>
</tr>
<tr>
<td>2</td>
<td>14 (50%)</td>
<td>14 (50%)</td>
<td>60</td>
<td>24–80</td>
</tr>
<tr>
<td>3</td>
<td>22 (34%)</td>
<td>41 (66%)</td>
<td>62</td>
<td>32–80</td>
</tr>
</tbody>
</table>

0032-5473/78/1000-0658 $02.00 © 1978 The Fellowship of Postgraduate Medicine
2. Serum TSH, measured by RIA before and after 200 μg of TRH intravenously (normal range: basal level ≤ 5 μu./ml; 20 min ≤ 20 μu./ml, 60 min ≤ 15 μu./ml). For the purpose of this study patients have only been included as showing an exaggerated response (i.e. abnormal responder) when the level at 20 min was 30 μu./ml or more (Gordin et al., 1974; Gordin and Lambarg, 1975).

3. In patients with abnormal TSH/TRH results, both thyroglobulin and microsomal antibody titres were measured by haemagglutination techniques (Bird and Stephenson, 1973; Perrin and Bubel, 1974). They were also measured in a representative number (ninety-six cases) of other patients from all groups with normal TSH/TRH tests. Titres in excess of 1 : 1000 were considered significant for microsomal antibodies and 1 : 100 for thyroglobulin antibodies.

4. Serum cholesterol levels (normal 3·5–6·5 mmol/l).

Results

The TSH/TRH test and antibody results are shown in Table 2 and T4 levels in Table 3.

Table 2. Number of abnormal TSH/TRH tests and positive thyroid auto-antibody titres

<table>
<thead>
<tr>
<th>Group</th>
<th>Total no. of patients</th>
<th>Abnormal TSH/TRH responders</th>
<th>Positive antibodies in abnormal responders</th>
<th>Positive antibodies in normal responders</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>12 (24%)</td>
<td>4/12 (33%)</td>
<td>5/38 (13%)</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
<td>4 (14%)</td>
<td>1/4 (25%)</td>
<td>3/20 (15%)</td>
</tr>
<tr>
<td>3</td>
<td>63</td>
<td>6 (10%)</td>
<td>3/6 (50%)</td>
<td>6/38 (16%)</td>
</tr>
</tbody>
</table>

* Including one patient who had only positive thyroglobulin antibodies.
† Including two patients who had only positive thyroglobulin antibodies.

Table 3. Serum T4 levels (nmol/l) of all patients

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean T4 ± s.d. for normal TSH/TRH responders</th>
<th>Mean T4 ± s.d. for abnormal TSH/TRH responders</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88 ± 17</td>
<td>74 ± 17</td>
</tr>
<tr>
<td>2</td>
<td>89 ± 21</td>
<td>87 ± 23</td>
</tr>
<tr>
<td>3</td>
<td>101 ± 17</td>
<td>89 ± 14</td>
</tr>
</tbody>
</table>

In group 2, twenty-five patients including one abnormal responder had basal TSH levels ≤ 5 μu./ml; three patients, all of whom were abnormal responders, had basal TSH levels > 5 μu./ml. One of the four abnormal responders had positive antibodies. All the abnormal responders were female. One patient was found to be hyperthyroid; TSH levels were 1·0 μu./ml basally, 20 and 60 min after TRH, serum thyroxine > 200 nmol/l and thyroid antibodies positive.

In group 3, fifty-eight patients including two abnormal responders had basal TSH levels ≤ 5·0 μu./ml; five patients, including four abnormal responders had basal TSH levels > 5·0 μu./ml. Of the abnormal responders one was male and three had positive antibodies. Thirty-six per cent of those with an exaggerated response of TSH to TRH (31% with atrial dysrhythmias and 50% with sinus rhythm) had significant titres of thyroid auto-antibodies compared to 15% with positive antibodies in those with normal TSH response to TRH.

The serum cholesterol levels did not differ significantly in any group nor did they differ between normal and abnormal responders to TRH (Table 4).

Table 4. Serum cholesterol levels mmol/l of all patients

<table>
<thead>
<tr>
<th>Group</th>
<th>TSH/TRH responders</th>
<th>TSH/TRH responders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean cholesterol ± s.d. for normal</td>
<td>Mean cholesterol ± s.d. for abnormal</td>
</tr>
<tr>
<td>1</td>
<td>6·1 ± 2·8</td>
<td>5·7 ± 1·2</td>
</tr>
<tr>
<td>2</td>
<td>6·1 ± 0·85</td>
<td>7·3 ± 0·7</td>
</tr>
<tr>
<td>3</td>
<td>5·7 ± 1·3</td>
<td>6·3 ± 0·9</td>
</tr>
</tbody>
</table>

No significant difference between the groups (Student's t test).

Discussion

In this study the initial purpose was to detect patients with occult thyrotoxicosis, especially in those with atrial dysrhythmias, and three were found, two with established and one with paroxysmal atrial fibrillation. Each had a raised T4 and a TSH/TRH test would not normally have been required to detect these cases. This suggests that a serum T4 estimation is a useful routine investigation in any patient with atrial dysrhythmia, for approximately 5% will have unsuspected thyrotoxicosis. No subjects with hypothyroidism were discovered. The unexpected feature of these results was the high incidence of an exaggerated TSH response to TRH in all three groups, in the presence of a normal serum T4; 24% of the atrial fibrillation group, 14% of the paroxysmal group and 10% of those with ischaemic heart disease in sinus rhythm had abnormal TSH/TRH tests, i.e. 16% of clinically euthyroid patients with heart disease were found to have this biochemical finding. The higher proportion with an
exaggerated response in the atrial dysrhythmia groups compared with those in sinus rhythm is of interest but is significant only at the 5% level. It had originally been thought that the patients in sinus rhythm would have acted as a control group in contrast to those with dysrhythmia but it soon became apparent that an abnormal TRH response was common in both types of patient. The response was not associated with any particular drug or combination of drugs, for a wide spectrum of medication has been employed in these cardiac patients and none can be regularly related to the abnormalities reported here. The mean T4 level of the abnormal responders in the atrial fibrillation groups is slightly lower, although within normal limits, than the mean T4 level of the normal responders in sinus rhythm.

Several reports have been published of euthyroid patients who have abnormal TSH/TRH tests, notably those who have had thyroidectomies (Hedley et al., 1971; Bellabarba, Benard and Langlois, 1972) treatment with 131I (Tunbridge, Harsoults and Goolden, 1974; Toft et al., 1974) auto-immune thyroiditis (Gordin et al., 1974; Gordin and Lamberg, 1975) exophthalmos (Chopra et al., 1974; Franco et al., 1973) and malnutrition (Pimstone, Becker and Hendricks, 1973). The reason for the raised TSH levels in these cases is unknown but it has been suggested that excessive pituitary drive on the normal remaining thyroid gland is required to maintain an euthyroid status (Tunbridge et al., 1974). The authors have been unable to find any reported study of the frequency of occurrence of abnormal TSH/TRH tests in normal or euthyroid subjects. The only value for TSH in a general population is a basal figure reported by the Whickham Survey Group where 2.8% of males and 7.5% of females had TSH levels of greater than 6 μU/ml (Tunbridge, 1976). But a single TSH estimation is of limited use, because, of the abnormal responders in the present report, seven had initial levels of less than 60 μU/ml, i.e. the complete TSH/TRH test must be employed if its full value is to be realized, and this is also the view of Alaghband-Zadeh et al. (1977). The percentage of patients with positive thyroid antibodies in the three groups (20, 28, 18% respectively), albeit in a hospital population, is also higher than expected. In a mixed hospital and volunteer group of middle-aged women, Mittra, Perrin and Kumaoka (1976) found antibodies in 26%, but their lower limits of titres were less than the present series, namely 1:20 for thyroglobulin and 1:100 for microsomal antibodies. In contrast, the Whickham Survey found that in a general population microsomal antibodies were present in 2-7% males and 10-3% females with lower figures for thyroglobulin antibodies (Tunbridge, 1976; Tunbridge et al., 1976). Over a third of the patients who responded abnormally to TRH had positive antibodies. The difference between the proportion of abnormal TSH/TRH responders and normal responders who have positive antibodies is shown in Table 2, suggests that the abnormally responding patients have some form of thyroid auto-immune disease, although the numbers for comparison are too small to be significant.

Of the twelve patients who had atrial dysrhythmia, an exaggerated TRH response, three presented with fast atrial fibrillation more in keeping with hyperthyroidism than depressed thyroid reserve of hypothyroidism (where in any case atrial fibrillation is an unusual finding). In the majority of patients, the ventricular response was adequately controlled by digoxin, occasionally with propranolol, but in two cases this had only minimal effect and carbimazole was given. There was no improvement and the serum TSH increased. A cautious trial of triiodothyronine was instituted with little clinical response but the serum TSH fell to the lowest level of normal, thus demonstrating the integrity of the hypothalamic-pituitary axis. The duration of the ankle tendon reflex was not prolonged in any of the twenty-two patients who responded abnormally to TRH. It was not possible to differentiate clinically between patients with an abnormal or normal TSH/TRH response. To date, follow-up observation of the abnormal TRH responders has not disclosed any progression to obvious hypothyroidism.

A normal serum thyroxine, raised TSH levels and positive thyroid antibodies is suggestive of primary clinical hypothyroidism or low thyroid reserve. Although the latter may account for the abnormalities, it does not explain why in many instances the presentation with tachycardia and atrial fibrillation should be so unlike the picture of thyroid insufficiency, or why the number of cardiac patients with abnormal tests should be so high. Bastenie, Vanhaeist and Neve (1967) and Fowler, Swale and Andrews (1970) have suggested an association between thyroid and ischaemic heart disease and Tunbridge et al. (1976) have hinted of this in females. The present data do not entirely support this view for although the authors found a high incidence of abnormal TSH/TRH tests in the ischaemic group, owing to coronary artery disease, the percentage of patients with abnormal TSH/TRH tests was greater in the dysrhythmia groups where ischaemia from coronary disease was less prevalent. Also, the serum cholesterol levels did not differ in any of the groups. Atrial muscle disease has been reported in thyroid toxicosis (Wan, Lee and Toh, 1972) and Fairfax and Leatham (1975) have described patients with idiopathic heart block who had thyroid or other auto-immune disorders. As has been suggested by
TRH response in atrial dysrhythmias

Mathews, Whittingham and Mackay (1974), the auto-immune process itself may be invoked as a cause of vascular disease and the action on the cardiovascular system of circulating immune complexes in thyroid disease and even of the metabolic effects of high concentration of TSH needs to be explored (Bastenie et al., 1977). The present authors suggest that the problem is much wider than that of a correlation simply between symptomless auto-immune thyroiditis and coronary disease and that other types of heart disease especially with atrial dysrhythmia may be produced or aggravated by auto-immune processes.

The authors cannot explain why a high proportion of their patients have positive thyroid antibodies but there is a hypothesis which can account for their other findings. Thyroid auto-immune disease, present in a large number of their cases, might result in the abnormal breakdown of thyroxine with the formation of analogues of thyroxine (Braverman, Ingbar and Sterling, 1970), namely triac or tetrac. This would explain the euthyroid state (for these compounds have a weak metabolic action (Lerman and Pitt-Rivers, 1956), the partial suppression of thyroid activity with a consequent rise in TSH and also a specific effect on the heart. Triac has a specific and profound action on heart muscle in that experimentally it increases cardiac cellular oxygen requirements (Barker and Lewis, 1956) and alters fibre morphology (Symons, Olsen and Hawkey, 1975; Olsen, Symons and Hawkey, 1977). The presence of triac and tetrac in the serum of a patient with thyrocardiac disorder has been reported previously (Symons, Richardson and Wood, 1971) and the measurement of circulating analogues of thyroxine in patients with auto-immune thyroid disease and cardiac disorders is required.

Acknowledgment

We thank the National Pituitary Agency, Bethesda, for supplies of human TSH for iodination and rabbit anti-human TSH serum, also Dr D. R. Bangham for the Medical Research Council LTSH fraction 68/38 which was used as standard, and Mr R. L. Markham for assistance with antibody studies.

References

