Changes in glucose tolerance, insulin, serum lipids and lipoproteins in patients with renal failure on intermittent haemodialysis

K. K. ARORA
M.B., B.S., M.R.C.P.

J. A. P. TRAFFORD
M.B., B.S., M.R.C.P.

M. K. ATKINSON*
M.B., B.S., M.R.C.P.

J. SHELDON
M.D., M.R.C.P.

Renal Unit, Royal Sussex County Hospital, Brighton

R. NUNN
M.Sc., F.R.I.C., M.R.C.Path.

St Francis Hospital, Haywards Heath, Sussex

Summary
Fasting serum lipids and lipoprotein patterns, glucose tolerance and serum insulin response to glucose were investigated in eight patients with renal failure on intermittent haemodialysis and five normal controls. The mean 0-5, 1 and 2 hr blood glucose values were significantly higher in patients compared with controls but there was no significant difference between patients and controls in respect of fasting serum insulin levels or the insulin response to glucose. Six of the eight patients showed hypertriglyceridaemia (hyperpre-betaproteinaemia).

Introduction
Hyperlipoproteinaemia is a known complication of end-stage renal failure (Bagdade, Porte & Bierman, 1968; Bagdade, Bierman & Porte, 1967). In addition, impaired glucose tolerance has been described in patients with chronic renal failure on intermittent haemodialysis (Losowsky & Kenward, 1968; Bagdade, 1968; Hutchings, Hegstrom & Scribner, 1966).

In the present study, glucose tolerance and insulin response to glucose, and serum lipids with lipoprotein patterns were investigated in an attempt to determine whether there is any consistent relationship between disturbances of carbohydrate tolerance and lipoprotein patterns in patients with end-stage renal failure.

Subjects
Patients—Eight patients with end-stage chronic renal failure on intermittent haemodialysis were studied as in-patients (Table 1). Their mean age was 38 years (range 22–49 years). There were six females and two males. All patients were within 10% of ideal body weight (Metropolitan Life Insurance Company Statistical Bulletin, 1959). The creatinine clearance of each patient was less than 1-5 ml/min. The mean duration of dialysis was 25-7 months (range 2–50 months). There was no evidence of any other systemic disease and there was no family history of diabetes mellitus. No patient had evidence of infection of the shunt or elsewhere at the time of study. All patients were dialysed twice weekly (18 hr/week) using a coil dialyser. They were taking 60 g of protein/day and carbohydrate constituted 40–45% of the total calorie intake.

Controls—Five healthy subjects working in the renal unit acted as controls. Their mean age was 29 years (range 21–42 years). There were three females and two males. All were within 10% of ideal body weight.

Methods
Patients and controls were on a 300 g carbohydrate diet for 3 days before each test. Blood samples were taken after a 10-hr overnight fast, in the resting state and without applying a tourniquet, for the estimation of glucose, insulin and serum lipids. Blood samples were taken 0-5, 1 and 2 hr after 50 g of oral glucose for blood glucose and insulin.

Blood glucose was estimated by a glucose oxidase method (Werner, Roy & Weilinger, 1970) using an AutoAnalyzer. Serum cholesterol was estimated by a method using the modified Leiberman–Burchard reaction (Abell et al., 1952) and the serum triglycerides were determined by an enzymatic method (Eggstein, 1966). Lipoprotein patterns were assessed qualitatively using an agarose-gel method (Fredrichson, Levy & Lees, 1967).
All the tests were repeated at least once in all the patients and controls.

Results

The mean glucose and serum insulin values during glucose tolerance tests are shown in Table 2, Figs. 1 and 2.

Table 1 shows the results of serum lipids in the patients, and the normal range in our laboratory.

![Fig. 1. Mean blood glucose values of eight renal patients (solid line) and five controls (dashed line) following 50 g glucose. Bars indicate standard error of means.](http://pmj.bmj.com/)

![Fig. 2. Mean insulin values of eight renal patients (solid line) and five controls (dashed line) following 50 g of glucose. Bars indicate standard error of means.](http://pmj.bmj.com/)
Glucose tolerance, insulin and serum lipids in haemodialysis

295

compared with 108.4 mg/100 ml (SE = ±13.1) in the controls (P < 0.01).

The plasma lipoproteins assessed qualitatively from the electrophoretic patterns conformed with the lipid measurements, i.e. the six patients who had hypertriglyceridaemia showed Type IV hyperlipoproteinaemia according to Fredrickson’s classification (Fredrickson et al., 1967).

Discussion

Raised fasting immunoreactive insulin levels (Bagdade et al., 1968; Bagdade et al., 1967; Rabiniowitz & Zierler, 1968), hypertriglyceridaemia (Bagdade et al., 1968; Losowsky & Kenward, 1968; Hollister, Overall & Snow, 1967), increased insulin levels after glucose (Bagdade et al., 1968; Losowsky & Kenward, 1968; Hutchings et al., 1966; Karam, Grodsky & Forsham, 1963; Kreisberg et al., 1967; Perley & Kepnis, 1963; Yalow & Berson, 1960) and a high frequency of carbohydrate intolerance (Bagdade et al., 1968; Cohen, 1957; Ogilvie, 1935; Perkoff et al., 1958; Cerletty & Engbrurg, 1967; Horton, Johnson & Lobovitz, 1968) have been described in patients with uraemia and in obesity. In contrast to those of other workers such as Bagdade et al. (1968) all our patients had fasting immunoreactive insulin and fasting blood glucose levels within the normal range. Though 0.5, 1 and 2 hr blood glucose values were significantly higher than in controls, the absolute levels recorded in our patients were much lower than in other series and all the glucose tolerance curves were within the normal range. This may be related to the longer duration (mean 25-7 months) of haemodialysis, as there is evidence of reversibility of glucose intolerance in patients on intermittent haemodialysis (Hampers et al., 1966; Alfrey et al., 1967; Westervelt & Schreiner, 1962). Hutchings’ patients however still showed glucose intolerance 4 years after being on haemodialysis (Hutchings et al., 1966).

Hypertriglyceridaemia (hyperprebetalipoproteinaemia, Type IV Fredrickson’s classification) was observed in six of the eight patients in accordance with the findings of other workers (Bagdade et al., 1968; Losowsky & Kenward, 1968; Evans & Ostrander, 1967; Harlan et al., 1967; Hollister et al., 1967). This hypertriglyceridaemia may be due either to increased production or diminished removal of plasma triglycerides, or to a combination of both mechanisms.

Hypertriglyceridaemia resulting probably from increased synthesis of prebetalipoprotein has been shown to be associated with elevated fasting circulating immunoreactive insulin in non-uraemic subjects (Bagdade et al., 1968; Bagdade, 1968; Bierman & Porte, 1968; Reaven et al., 1967). The same relationship between triglycerides and circulating fasting insulin was shown in haemodialysed patients by Bagdade et al. (1968). But the presence of normal fasting insulin levels and a normal insulin response to glucose in our patients suggests that hyperinsulinemia cannot be a major factor in the pathogenesis of hypertriglyceridaemia seen in patients on maintenance haemodialysis.

Diminished peripheral removal of lipids may play an important part in hypertriglyceridaemia. Subnormal post-heparin lipolytic activity has been demonstrated in uraemia (Bagdade et al., 1968; Boyer & Scheig, 1970) with or without dialysis. This post-heparin lipolytic activity seems to reflect tissue levels of lipoprotein lipase, an enzyme which plays an important part in the removal of triglycerides. This low activity may be either due to true low levels of lipoprotein lipase or the presence of an inhibitor of lipoprotein lipase. The fact that three of our patients who have been haemodialysed for 3 years still showed hypertriglyceridaemia throws doubt on the existence of this inhibitor or it suggests such an inhibitor is not dialysable.

Acknowledgments

We wish to thank Mr J. Cook of the Biochemistry Department for technical help. We are especially indebted to Mr C. Hallet for the insulin assays and Mr G. Cowdrey for the lipoprotein electrophoresis.

References

