Metacarpal bone dimensions in young and aged South African Bantu consuming a diet low in calcium

ALEXANDER R. P. WALKER
D.Sc.

B. F. WALKER

B. D. RICHARDSON
M.Sc.

M.R.C. Human Biochemistry Research Unit, South African Institute for Medical Research, Johannesburg, South Africa

Summary
Groups of South African Bantu boys and girls of 14 years, compared with local Caucasian children, have lower cortical thickness, cortical score, and cross-sectional and volume scores for second metacarpal. Yet, when these parameters on groups of aged Bantu men and women, 70–79 years, are compared with published values on corresponding Caucasians, there are no significant differences. Further, aged Bantu have lower prevalences of hip fracture and severe collapse of vertebral bodies. Since a low calcium intake, and in aged Bantu women numerous pregnancies and long lactations, are compatible with satisfactory bone data, it is questioned whether the present insistence on a high calcium intake is justified.

Introduction
Over 99% of body calcium is contained in bone. Hence, a habitually low absorption or retention of the element would be expected to affect composition and dimensions of bone. The most plausibly influential factor is level of calcium ingested. Almost invariably, daily intake is less in underprivileged than in sophisticated populations. Yet studies on particular bones in Indian, Bantu, Ugandan and Caucasian subjects have indicated that calcium concentration is fairly constant (Nicholls & Nimalasuriya, 1939; Walker & Arvidsson, 1954; Dickerson & John, 1969). We therefore decided to investigate dimensions of cortex of bone (in the present instance second metacarpal) in two populations accustomed to a low calcium intake, Bantu school-children and aged people, in rural and urban areas. Additionally, in a region where dental fluorosis is marked, calcium intake and bone size were correspondingly investigated. For comparison, mean values for cortical thickness, cortical index, cross-sectional area and volume indices of second metacarpal are available, or have been extrapolated, from publications on Caucasian subjects (Barnett & Nordin, 1960; Nordin, MacGregor & Smith, 1966; Morgan et al., 1967; Smith et al., 1969; Hossain, Smith & Nordin, 1970; Dequecker, 1970; Exton-Smith et al., 1969b; Exton-Smith, 1970). Such data, of course, relate to persons used to a relatively high calcium intake.

Subjects
School-children
Pretoria. In 1962–65, interrural studies on school-children were carried out by the National Nutrition Research Institute, Pretoria. Considerable care was taken to obtain representative groups (Fellingham, 1966). At 14 years, the age chosen for this investigation, mean daily calcium intakes of the groups studied were: Bantu (seventeen boys, seventeen girls) 296±262 mg and Caucasians (twenty-seven boys, twenty-two girls) 833±410 mg (Lubbe, 1968). For the radiology studies, tube distance was 100 cm. X-rays of both hands, undertaken by Dr H. H. Christ, primarily for bone chronology studies (Christ, 1961), were carried out at Pretoria General Hospital. Measurements of second metacarpal were made as described below.

Kruidfontein and Saulspoort (rural areas). At Lessetheng Community School, Kruidfontein (135 miles west of Johannesburg), severe fluorosis, manifested by extensive brown stain with pitting of enamel, was present in 92% of pupils. Drinking water contained 5–14 parts fluorine per million. Eighteen boys and twenty-four girls aged 14 years were examined. Calcium intake was 275±210 mg per diem. At Moruleng Higher Primary School, Saulspoort, 6 miles distant, fluorosis was far less marked. Drinking water contained 1–3 parts fluorine per million. Sixteen boys and twenty-one girls of 14 years, showing either no relevant teeth lesions or only slight chalky patches, were examined. Calcium intake was 210±195 mg per diem. X-ray studies were made at George Stegmann Mission Hospital, Saulspoort. Tube distance was 60 cm; bearing in mind the position of second metacarpal on the X-ray plate, the angle subtended is small and distortion slight.
Aged Bantu

Johannesburg. In the lower middle-class Bantu suburb of Zola North-West, there are twenty-three men and thirty-four women aged 70–79 years. All were X-rayed at Mofolo South Clinic, Soweto (Johannesburg City Health Department). Tube distance was 110 cm. Calcium intake was 320 ± 265 mg per diem. On an average the women had given birth to 6-3 children, and three quarters had breast fed 5-1 children for 6–12 months.

Kgala. At this village (90 miles west of Johannesburg), seventeen men and twenty-one women were aged 70–79 years. All were X-rayed at Rustenburg Hospital. Tube distance was 100 cm. Mean daily calcium intake was 280 ± 255 mg. The women had had an average of 7-8 children, and had breast fed 6-3 for 9 months or more.

Kruidfontein. At this village (see above), where fluorosis is severe, twenty-four men and thirty women were aged 70–79 years. Of these, twenty-one men and twenty-seven women were X-rayed. Calcium intake was 340 ± 295 mg per diem. The women had produced an average of 7-3 children and had breast fed 5-9 for 9 months or more.

None of the children nor the aged Bantu had had calcium supplements.

Methods

Calcium intake

Among Pretoria children, calcium intake was estimated by the method of Burke & Stuart (1938) as modified locally by Lubbe (1968). Enquiry was limited to 7 days. Foods were chemically analysed.

For the rest, calcium intake was estimated by a recall procedure for 3 days. The South African food composition tables of Fox (1966) were used.

Radiographs

Hand radiographs (posterior–anterior) were made as described by Barnett & Nordin (1960) and by Exton-Smith et al. (1969a). At the mid-point of the second metacarpal of the right hand, measurements were made of external diameter (D) and internal diameter (d). The length (L) also was measured. With plates on the standard viewing box, measurements were made to 0-25 mm, a transparent rule and magnifying glass ($\times 3$) being used. All measurements were made by two persons; mean differences between measurements of D, d, and L, were 1-5, 3-8, and 0-5%, respectively. Calculations were made of total cortical thickness $D - d$, cortical index $D - d$ as described by Barnett & Nordin (1960), cortical area/total area, i.e. $(D/2)^2 - (d/2)^2 (D/2)^2$ as used by Hossain et al. (1970), cross-sectional area $D^2 - d^2$ as used by Dequeker (1970), and bone volume index $\frac{D^2 - d^2}{DL}$ as described by Exton-Smith et al. (1969b; Exton-Smith, 1970).

In the aged Bantu subjects, to secure data on the prevalence of fracture of the neck of the femur, and prevalence of obvious collapse of lumbar vertebrae, the following X-rays were taken—(1) anterior–posterior view of pelvis, and (2) lateral and anterior–posterior views of dorsolumbar spine.

Comments on results

Calcium intake and loss

The calcium intakes of both Bantu children and adults were less than half of those of Caucasians (Nordin et al., 1966; Smith et al., 1969). Regarding loss of calcium by old Bantu women, firstly, 30 g calcium per foetus was assumed (Widdowson & Spray, 1951). Next, since Bantu babies grow at the same rate as Caucasian babies for the first 6 months (Brock & Autret, 1952), a milk yield of 750 ml per diem (Wallgren, 1945) was assumed, containing 28 mg calcium/100 ml (Walker et al., 1954). This flow, over 9 months, involves a loss of 57 g calcium. Hence, calcium loss for six children amounts to 522 g, probably equivalent to over half of the mother's total body calcium prior to child-bearing (Garn & Wagner, 1969). For Caucasians, loss of calcium for the pregnancy and lactation of three children for 3 months would be 147 g.

Bone data on children

For the boys, the scores for length, cortical thickness, cortical index, and cross-sectional area and volume indices, were all significantly lower in Pretoria Bantu than in Pretoria Caucasians ($P < 0.01$). This also applied for Bantu compared with Caucasian girls, save that the mean bone volume index of the Bantu girls was virtually identical to the extrapolated mean value for English girls studied by Exton-Smith et al. (1969b; Exton-Smith, 1970). The lower values in Bantu may be attributed in part to their slower rate of growth. Insufficiency of calcium per se is unlikely to be responsible (Walker, 1954; Garn, Pao & Rihl, 1964; Luyken & Luyken-Koning, 1969). In the Pretoria Bantu and Caucasian children, in each racial group the upper and lower quartiles, with respect to calcium intake, had mean cortical dimensions which did not differ significantly. The same type of finding (non-implication of level of calcium intake) has been noted for groups of U.S.A. Caucasian and oriental children (Garn et al., 1964; Garn & Wagner, 1969), also for different racial groups of children studied in Surinam (Luyken & Luyken-Koning,
The bearing of race on cortical thickness of metacarpal appears to be variable (Luyken & Luyken-Koning, 1969). In the Bantu, values for boys at 14 years were slightly lower than those for girls (P < 0.05). This applied in certain respects to the Caucasian groups. A sex difference of this type has been noted by others (Morgan et al., 1969; Garn & Wagner, 1969). In respect of excessive fluorine intake, the bone data were not significantly affected.

Bone data on adults

In the aged Bantu groups, mean bone data were either very close to, or lay within corresponding mean values reported for aged Caucasians (Nordin et al., 1966; Morgan et al., 1967; Smith et al., 1969; Garn & Wagner, 1969; Hossain et al., 1970; Dequeker, 1970; Exton-Smith, 1970).

In the fluorosis area, mean bone data on the aged Bantu did not differ significantly from corresponding data found in the non-fluorosis areas. This was unexpected (Srikantia & Siddiqui, 1965; Anonymous, 1970).

Among the total of sixty-four aged Bantu men and eighty-five women of 70–79 years examined, none had evidence of hip fracture. In the study of Solomon (1968) on urban Johannesburg Bantu, age-adjusted prevalence of hip fracture was only a tenth of such reported for corresponding Caucasians. With regard to obvious collapse of lumbar vertebral bodies, in the old Bantu, 6.3 and 11.7% of males and females, respectively, were affected. A low prevalence, 6%, was noted in elderly indigenous inhabitants in Surinam (Luyken & Luyken-Koning, 1969). In contrast, in Caucasians in U.S.A., Bernstein et al. (1966) reported such collapse in 45 and 35% of males and females, respectively. In an interracial study undertaken in Durban on female groups of mean age approximately 70 years, Dent, Engelbrecht & Godfrey (1968) reported osteoporosis present in 3 and 2% of rural and urban Bantu, but in 14% of Caucasians. A lower prevalence of osteoporosis in U.S.A. Negroes compared with Caucasians has often been reported (Smith & Rizek, 1966). Unfortunately, in assessing the frequency of osteoporosis stigma, different workers use different criteria; notew
standing, it would seem justifiable to conclude from our results that the prevalence of such stigmata was lower in Bantu than in Caucasians.

Discussion

Within the context prevailing, the salient finding is that in aged Bantu, a low calcium intake, and in the old women a very high drain of calcium, are both consistent with metacarpal bone dimensions and indices closely similar to those of Caucasians. Further, among the aged Bantu, also notable were absence of hip fracture and a lower prevalence of obvious collapse of lumbar vertebrae. It should be added that the diet of Bantu not only is low in calcium, but is high in phytic acid, and in the orthodox sense has an unfavourable calcium-phosphorus ratio; the diet, moreover, is frequently low in protein, especially animal protein (Walker, 1966).

Can data on metacarpal be regarded as representative of the bone situation in the body as a whole? It has been demonstrated that cortical dimensions of metacarpal, also humerus, correlate highly significantly \((P < 0.001) \) with mineral matter per unit volume (Virtama & Mahonen, 1960; Virtama & Tekkla, 1962). Although, as Virtama & Tekkla (1962) have emphasized, caution is necessary in extrapolating findings from one bone to another, it would seem reasonable to consider that there are no obvious differences in the skeletal stores of aged Bantu compared with Caucasians.

If the foregoing is valid, how is it accomplished? (1) The habitual meagre intake of calcium by Bantu must be very well utilized. There is adequate evidence that low intakes of the element are associated with a high absorption and relatively low excretion (Nicholls & Nimalasuriya, 1939; Luyken & Luyken-Koning, 1961; Begum & Pereira, 1969; Spencer et al., 1969; Garn, 1970). (2) It is probably of relevance that old Bantu are far more active than Caucasians of the same age. All old Bantu studied still busied themselves in and around their dwellings; in rural areas some walk tremendous distances to their cattle posts (as much as 30 miles distant).

At a recent symposium, Whedon (1970) stated, 'Clearly now, many factors, hormonal, nutritional, physical and circulatory influence the rate of bone loss or bone preservation...' We question whether this is valid for communities. In each of the factors enumerated, our elderly Bantu groups differed markedly from Caucasian groups studied elsewhere. Yet, no significant interracial differences are apparent in mean data on metacarpal dimensions.

Table 2. Metacarpal dimensions in aged Bantu compared with data on Caucasians (means and standard deviations in mm)

<table>
<thead>
<tr>
<th>Population</th>
<th>(D)</th>
<th>(d)</th>
<th>(D - d)</th>
<th>(\frac{D - d}{D})</th>
<th>(\frac{(D/2)^2 - (d/2)^2}{(D/2)^2})</th>
<th>(D^2 - d^2)</th>
<th>(L)</th>
<th>(\frac{D^2 - d^2}{DL})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bantu males</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zola (urban)</td>
<td>8.96</td>
<td>4.51</td>
<td>4.45</td>
<td>0.50</td>
<td>0.75</td>
<td>59.28</td>
<td>69.33</td>
<td>0.095</td>
</tr>
<tr>
<td>SD</td>
<td>0.80</td>
<td>1.11</td>
<td>0.68</td>
<td>0.09</td>
<td>0.08</td>
<td>8.34</td>
<td>3.63</td>
<td>0.010</td>
</tr>
<tr>
<td>Kgalá (rural)</td>
<td>8.34</td>
<td>3.90</td>
<td>4.44</td>
<td>0.53</td>
<td>0.79</td>
<td>54.10</td>
<td>69.48</td>
<td>0.093</td>
</tr>
<tr>
<td>SD</td>
<td>0.54</td>
<td>0.73</td>
<td>0.56</td>
<td>0.07</td>
<td>0.07</td>
<td>6.66</td>
<td>4.30</td>
<td>0.008</td>
</tr>
<tr>
<td>Kruidfontein (fluorosis)</td>
<td>9.00</td>
<td>4.61</td>
<td>4.39</td>
<td>0.49</td>
<td>0.74</td>
<td>59.49</td>
<td>68.56</td>
<td>0.096</td>
</tr>
<tr>
<td>SD</td>
<td>0.66</td>
<td>0.85</td>
<td>0.66</td>
<td>0.08</td>
<td>0.08</td>
<td>9.38</td>
<td>3.20</td>
<td>0.010</td>
</tr>
<tr>
<td>Caucasian males</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S.A. (Garn, 1969)</td>
<td>8.60</td>
<td>3.80</td>
<td>4.80</td>
<td>0.56</td>
<td>0.80</td>
<td>59.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>England (Morgan et al., 1967)</td>
<td>9.70</td>
<td>5.10</td>
<td>4.60</td>
<td>0.47</td>
<td>0.72</td>
<td>68.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>England (Exton-Smith, 1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holland (Dequeker, 1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bantu females</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zola (urban)</td>
<td>7.84</td>
<td>4.75</td>
<td>3.09</td>
<td>0.40</td>
<td>0.63</td>
<td>38.64</td>
<td>64.82</td>
<td>0.075</td>
</tr>
<tr>
<td>SD</td>
<td>0.60</td>
<td>0.78</td>
<td>0.64</td>
<td>0.08</td>
<td>0.07</td>
<td>7.86</td>
<td>3.36</td>
<td>0.012</td>
</tr>
<tr>
<td>Kgalá (rural)</td>
<td>7.56</td>
<td>4.23</td>
<td>3.33</td>
<td>0.44</td>
<td>0.68</td>
<td>38.92</td>
<td>65.96</td>
<td>0.077</td>
</tr>
<tr>
<td>SD</td>
<td>0.40</td>
<td>0.72</td>
<td>0.63</td>
<td>0.08</td>
<td>0.07</td>
<td>6.17</td>
<td>3.34</td>
<td>0.010</td>
</tr>
<tr>
<td>Kruidfontein (fluorosis)</td>
<td>8.20</td>
<td>5.04</td>
<td>3.16</td>
<td>0.39</td>
<td>0.62</td>
<td>41.30</td>
<td>65.81</td>
<td>0.076</td>
</tr>
<tr>
<td>SD</td>
<td>0.46</td>
<td>0.83</td>
<td>0.75</td>
<td>0.09</td>
<td>0.08</td>
<td>8.35</td>
<td>3.50</td>
<td>0.013</td>
</tr>
<tr>
<td>Caucasian females</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S.A. (Garn, 1969)</td>
<td>7.60</td>
<td>4.25</td>
<td>3.35</td>
<td>0.44</td>
<td>0.69</td>
<td>39.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scotland (Nordin et al., 1966)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scotland (Smith et al., 1969)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scotland (Hossain et al., 1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>England (Morgan et al., 1967)</td>
<td>8.10</td>
<td>4.95</td>
<td>3.15</td>
<td>0.39</td>
<td>0.63</td>
<td>41.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>England (Exton-Smith, 1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holland (Dequeker, 1970)</td>
<td>0.37</td>
<td></td>
<td>39.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Metacarpal size in young and aged Bantu
The whole situation will remain unsatisfactory until valid information is available on the lower limits of bone thickness and other indices which, in a community, are consistent with everyday good health and activity.

In the light of our findings, it would seem imperative that the reasons for the present insistence on high calcium intakes during growth, pregnancy and lactation, be critically re-examined. Equally, the continued addition of calcium salts to staple foodstuffs calls for renewed justification.

Acknowledgments

For facilitating or undertaking the X-ray observations at the hospitals at Pretoria, Rustenburg, Saulspoort, and Johannesburg (Mofolo), we are very grateful to Dr H. H. Christ, Dr F. Jooste, Dr G. H. Roux, and Mrs J. Richards, respectively. Miss M. J. Fick and Miss M. Wadvallah assisted with the cortical measurements.

References

Metacarpal size in young and aged Bantu

WIDDOWSON, E.M. & SPRAY, C.M. (1951) Chemical development in utero. Archives of Disease in Childhood, 26, 205.