CASE REPORT

The anti-diabetic action of guanethidine

K. K. GUPTA*
M.D. Agra
County Hospital, Lincoln

A case was recently reported where stoppage of guanethidine treatment of hypertension in a diabetic patient resulted in a marked increase in insulin requirements and blood sugar levels (Gupta & Lillicrap, 1968). This patient had been previously receiving 20 mg guanethidine daily for 4 months for control of hypertension. An additional 24 units of soluble insulin were needed daily after guanethidine was discontinued. This raised the possibility of a significant anti-diabetic action of guanethidine. This communication describes results of a trial designed to evaluate it.

Material and methods
This study was done on three maturity onset type diabetics (Table 1). These were admitted to hospital, two for cataract extraction and one for the initiation of dieting for obesity. All these had hypertension. There was no significant complication in any case.

All of them had been in the ward for a week on ordinary diet (no calorie restriction) before the study was commenced and no change was made during it.

Guanethidine was started in a dose of 20–30 mg daily and the dose was increased to 50–90 mg over the next few days. No side effects of guanethidine were observed. No attempt was made to push guanethidine to limits of tolerance, or to secure evidence of definite sympathetic blockade, since the aim was only to find out if guanethidine in moderate dosage has a significant anti-diabetic effect. Glucose tolerance tests were performed according to the recommendation of the British Diabetic Association (FitzGerald & Keen, 1964). After a 12-hr overnight fast, 100 gm of glucose was given orally and blood sugar was estimated at 1, 2, and 3 hr.

Table 1

<table>
<thead>
<tr>
<th>No.</th>
<th>Age and sex</th>
<th>Disease</th>
<th>BP (mmHg)</th>
<th>Dose of guanethidine (mg/day)</th>
<th>Results of oral glucose tolerance tests (mg/100 ml) Before treatment</th>
<th>After treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>51, F</td>
<td>Diabetes, obesity, hypertension</td>
<td>220/120</td>
<td>50</td>
<td>13 May 1968
 Fasting 110
½ hr 187
1 hr 228
1½ hr 228
2 hr 198
2½ hr 173</td>
<td>20 May 1968
 Fasting 120
½ hr 120
1 hr 177
1½ hr 198
2 hr 170
2½ hr 163</td>
</tr>
<tr>
<td>II</td>
<td>61, F</td>
<td>Diabetes, cataract, obesity, hypertension</td>
<td>180/120</td>
<td>60</td>
<td>30 May 1968
 Fasting 260
½ hr 294
1 hr 327
1½ hr 344
2 hr 344
2½ hr 315</td>
<td>4 June 1968
 Fasting 131
½ hr 224
1 hr 252
1½ hr 302
2 hr 278
2½ hr 264</td>
</tr>
<tr>
<td>III</td>
<td>65, M</td>
<td>Diabetes, cataract</td>
<td>190/100</td>
<td>60</td>
<td>6 June 1968
 Fasting 131
½ hr 224
1 hr 302
1½ hr 232
2 hr 201
2½ hr 166</td>
<td>11 June 1968
 Fasting 145
½ hr 240
1 hr 248
1½ hr 212
2 hr 152
2½ hr 134</td>
</tr>
</tbody>
</table>

* Present address: Medical Registrar, Atkinson Morley's Hospital, London, S.W.20.
fast 50 g of glucose in 200–500 ml of water was given and capillary blood collected at 0, ½, 1, 1½, 2 and 2½ hr. Samples were analysed for glucose using ferrocyanide method.

Results

The results are shown in Table 1 (page 455).

Discussion

Although oral hypoglycaemics have been in use for more than 12 years there are very few studies of their effect on oral glucose tolerance tests (GTT). Duncan, Baird & Dunlop (1956) found in a group of ten patients treated with 3 g carbutamide daily that the mean fasting blood glucose fell from 247 to 146 mg/100 ml. They commented that this treatment was without effect on glucose tolerance and rate of its absorption.

Case 2 in the present study showed a fall in fasting blood glucose from 260 mg/100 ml before treatment to 131 mg/100 ml after 5 days’ treatment with guanethidine. All the three cases showed a significant improvement in oral GTT as shown in Table 1. Englehart & Vecchio (1965) reported results of oral GTT before, and 8–24 months after, administration of tolbutamide in a dose of 1 g daily. The mean blood glucose levels in the treated group were lower than the controls in all except the 120-min samples, where the adjusted values were identical. After guanethidine treatment for 5–7 days the 120-min blood glucose levels showed falls of −28, −66 and −49 mg/100 ml, respectively, with a further increase in the fall to −73 mg in Case 2 and Case 3 after 14 days treatment (Table 1). Herman (1966) using various sulphonylureas in maturity-onset type diabetics reported that eleven out of thirty-two patients showed no improvement in oral GTT; the improvement in GTT was marked in ten cases and moderate in nine cases. The improvement in oral GTT seen in the present study is comparable to the ‘moderate response’ group of the above series. It is thus clear that the results of the present study suggest a significant anti-diabetic effect of guanethidine, comparable to the existing oral hypoglycaemics.

The mechanism of the anti-diabetic action of guanethidine needs further study. Acute intravenous administration of guanethidine leads to liberation of adrenaline from the sympathetic nerve endings, and also hyperglycemia (Okun, Wilson & Gelfand, 1964). On the other hand long-term oral treatment with guanethidine produces depletion of tissue stores of catecholamines (the opposite of the acute effect), and a fall in fasting blood glucose levels with improvement in oral GTT as shown by the present study. Woeber, Arky & Braverman (1966) reported reversal of abnormal oral GTT in thyrotoxic patients during guanethidine administration. Porte et al. (1966) showed that adrenaline interferes with the secretion of insulin by the pancreas, and Woeber et al. (1966) suggested that guanethidine, by reducing the sympathetic tone, could modify the insulin response to an oral glucose load. Thus, study of plasma insulin levels before and during guanethidine administration would be necessary before drawing any conclusions about the mechanism of the anti-diabetic action of guanethidine. It is of some interest to note that guanethidine, being a guanidine derivative, is related to biguanides which are already in use as oral hypoglycaemic agents.

The results of the present study would justify controlled trials to compare the anti-diabetic effect of guanethidine with that of other oral hypoglycaemic drugs.

Acknowledgment

I wish to thank Dr C. A. Lillicrap, Consultant Physician, County Hospital, Lincoln, for permission to study these patients, and to publish this report.

References

