Pulmonary alveolar proteinosis treatment by whole-lung lavage

Pulmonary alveolar proteinosis (PAP) is a rare condition which is characterised by the abnormal accumulation of proteinaceous material in the alveolar spaces, with resulting impairment in oxygen exchange across the involved alveoli. The diagnosis of PAP can be established by the classic ‘milky’ effluent bronchoalveolar lavage fluid (BALF). The current effective treatment for PAP is whole-lung lavage (WLL). We offer one case of PAP with apparent presentations and the clinical course. This report provides some information about the diagnosis and treatment of PAP (see PAP video online).

A 39-year-old man, an ex-smoker, was brought to our respiratory department due to dry cough and progressive exertional dyspnoea for 7 months. He had been an antimonial worker for 6 years. Physical examination was significant for perioral cyanosis, mild clubbing and diffuse rales. Arterial blood gas analysis on room air showed oxygen partial pressure (PaO₂) 71.5 mm Hg. The serum lactate dehydrogenase level was elevated at 301 U/l (normal range: 135–225 U/l). The pulmonary function test exhibited moderate restriction and severe decrement in diffusing capacity. The total lung capacity was 3.43 l (60.1% pred) and diffusing capacity of lung for carbon monoxide (DLco) was 3.32 mmol/min/kPa (36.5% pred). Serial chest high resolution computerised tomography (HRCT) revealed progressive bilateral ground glass opacities consistent with ‘crazy paving’ configuration, extending but sparing some areas (figure 1A,B). The bronchoscopy showed normal endobronchial anatomy. Histological examination of the transbronchial lung biopsy showed chronic inflammation, which was negative for PAP. But the BALF revealed a turbid fluid. BALF light microscopy revealed periodic acid-schiff positive amorphous proteinaceous material. Electron microscopy showed intra-alveolar debris containing lamellar bodies (figure 2A–D). The definitive diagnosis of PAP was made upon the pathognomonic HRCT appearance and BALF examination.

After comprehensive consultation with specialists and the family, therapeutic WLL was performed first on the left lung. Under general anaesthesia, the two lungs were separated by double-lumen endobronchial tube. The left lung was flooded with 37°C warm saline, with manual chest percussion.1 A total of 10–15 cycles and about 15 l saline was used for each lung. The right lung was lavaged 1 week later. The patient was kept haemodynamically stable and there was no hypoxaemia during the lavage procedure; oxygen saturation can rise up to 100% sometimes. After both lungs lavage, the PaO₂ on room air increased up to 86.5 mm Hg, the DLco improved to 55.6% pred and HRCT findings showed apparent clearing of the lungs (figure 1C,D).

Following discharge, this patient was free of respiratory symptoms and there was no indication for further lavage. In view of the rare occurrence, long-term follow-up is necessary.2

The aetiology and pathogenesis of PAP remain unclear. The suspected causes are associated with occupational exposures, which may result in impaired alveolar macrophage function and surfactant clearance.1 Progressive dyspnoea and dry cough are common symptoms. The diagnosis can be established by the classic milky BALF, and lung biopsy is not the diagnostic gold standard. WLL is the current mainstay of treatment for PAP. The minority can be spontaneous cure, but there are no simple biochemical parameters to predict the prognosis (see supplementary material online).

Figure 1 Changes in serial chest HRCT image features. Images (A, B) during 8 months without any therapy showed a strong worsening of diffuse ground-glass opacification and interlobular septa thickening, a characteristic ‘crazy paving’. Image C after left whole-lung lavage (WLL) and D after right WLL. Note the marked clearing of the infiltrates in both lungs after lavage.
Chang Cai, Min Ye, Honglei Xu, Yuping Li
Division of Pulmonary Medicine, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
Correspondence to Yuping Li, Division of Pulmonary Medicine, First Affiliated Hospital of Wenzhou Medical College, Fuxue Lane No. 2, Wenzhou 32500, China; wzres886@163.com

Additional materials are published online only. To view these files please visit the journal online (http://pmj.bmj.com).

Contributors CC has contributed to conception and design, and carried out the manuscript preparation. MY and HX have carried out acquisition and interpretation of data. YL has revised it critically for important intellectual content and provided final approval of the version to be published. All authors have read and approved the final manuscript. All authors participated in determining the order of authorship.

Competing interests None.
Patient consent Obtained.
Ethics approval Approval provided by the Hospital Committee of Medical Research Ethics.
Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement Dr Chang Cai has included details of data sharing in the box provided. Data available on request from the corresponding author: Yuping Li. Email: wzres886@163.com. The initial data were deposited in the First Affiliated Hospital of Wenzhou Medical College Medical records system.

This paper is freely available online under the BMJ Journals unlocked scheme, see http://pmj.bmj.com/site/about/unlocked.xhtml

REFERENCES

Learning points

- Pulmonary alveolar proteinosis (PAP) is a rare condition, which can be diagnosed by the characteristic chest HRCT appearances and classic ‘milky’ bronchoalveolar lavage fluid findings.
- Whole-lung lavage can be considered to be a safe and effective treatment for PAP.

Figure 2 Lung histopathology, bronchoalveolar lavage fluid (BALF) appearance and cytology, and ultrastructure. (A). Transbronchial biopsy appeared as chronic inflammation (×100). (B). Cytospin of BALF showed alveolar macrophages containing abundant PAS-positive material in a background of PAS-positive granular lipoproteinaceous material (×400). (C). BALF appearance from whole-lung lavage (up) and bronchoscopic lavage (lower). Note the ‘milky’ effluent. (D). Ultrastructure of BALF showing cellular debris and concentrically laminated phospholipid lamellar bodies (×20 000). PAS, periodic acid-schiff stain.
Pulmonary alveolar proteinosis treatment by whole-lung lavage

Chang Cai, Min Ye, Honglei Xu and Yuping Li

Postgrad Med J published online April 29, 2012

Updated information and services can be found at:
http://pmj.bmj.com/content/early/2012/04/28/postgradmedj-2011-130620

These include:

Supplementary Material
Supplementary material can be found at:
http://pmj.bmj.com/content/suppl/2012/04/28/postgradmedj-2011-130620.DC1

References
This article cites 2 articles, 1 of which you can access for free at:
http://pmj.bmj.com/content/early/2012/04/28/postgradmedj-2011-130620#BIBL

Open Access
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/2.0/ and http://creativecommons.org/licenses/by-nc/2.0/legalcode.

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Open access (45)
- Cardiothoracic surgery (66)
- General surgery (168)
- Radiology (418)
- Surgical diagnostic tests (164)
- Immunology (including allergy) (396)
- Histopathology (10)
- Radiology (diagnostics) (291)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/