Mountain mortality: a review of deaths that occur during recreational activities in the mountains

J S Windsor, P G Firth, M P Grocott, G W Rodway, H E Montgomery

ABSTRACT

The growing popularity of activities such as hiking, climbing, skiing and snowboarding has ensured that the number of visitors to mountain environments continues to increase. Since such areas place enormous physical demands on individuals, it is inevitable that deaths will occur. Differences in the activities, conditions and methods of calculation make meaningful mortality rates difficult to obtain. However, it is clear that the mortality rate for some mountain activities is comparable to hanging, parachuting, boxing and other pastimes that are traditionally viewed as dangerous. Deaths in the mountains are most commonly due to trauma, high altitude illness, cold injury, avalanche burial and sudden cardiac death. This review describes the mortality rates of those who undertake recreational activities in the mountains and examines the aetiology that lies behind them.

Calcating the mortality rate in a mountainous environment

Obtaining a meaningful and accurate picture of mortality in the mountains is not a straightforward task. While the number of deaths for any given activity provides a basic level of factual information, this does little to identify the degree of risk that an individual is exposed to. Although 58 more deaths were attributed to swimming than mountaineering in England and Wales between 1982 and 1988, this does not necessarily imply that swimming is more dangerous. Instead it may simply reflect the fact that more individuals participate in swimming than mountaineering activities. In a similar way, the increase seen in mountaineering fatalities in the USA over the last 50 years does not necessarily suggest that mountaineering has become more hazardous, but may instead reflect the growing number of participants.

In order to determine the mortality rate of different mountain activities, researchers have adopted two methods of calculation, and these are described below.

The number of deaths divided by the total number of individuals exposed

In 1988, Pollard and Clarke published a short report in the Lancet that identified 23 fatalities that had occurred on 83 expeditions to mountains above 7000 m. Since these expeditions had 553 members, a mortality rate of 4.3 per 100 mountaineers was cited. However, since many of these expeditions were focused upon dangerous and technically challenging objectives like K2, this rate was somewhat higher than that found in subsequent studies. For many years the historian Elizabeth Hawley and her colleagues in Kathmandu have diligently assembled a comprehensive database containing information on the vast majority of mountaineering expeditions undertaken in the Nepali Himalaya. Between 1990 and 2006, Hawley and her colleague Richard Salisbury identified mortality rates of between 0 and 1.26 deaths for every 100 mountaineers climbing above 6000 m (table 1).

On Mt Everest the mortality rate among those who ascend above base camp is 1.3%, with the majority of deaths (82.3%) occurring during or following the day of a summit attempt. The mortality rate among trekkers in Nepal is significantly lower. Between 1984 and 1991 these were calculated as 0.014 and 0.015 per 100

Mountainous regions occupy 40 million km2 and account for approximately 27% of the Earth’s surface. It is estimated that 58 million people live permanently above 3000 feet (2439 m), with an additional 100 million visitors travelling to mountain regions for work and recreation each year. The increasing popularity of activities such as trekking and climbing has ensured that these numbers continue to grow. The number of trekkers in Nepal has risen by 330% from 1982 to 1988; this does not necessarily imply that mountaineering in England and Wales between 1982 and 1988, this does not necessarily imply that swimming is more dangerous. Instead it may simply reflect the fact that more individuals participate in swimming than mountaineering activities. In a similar way, the increase seen in mountaineering fatalities in the USA over the last 50 years does not necessarily suggest that mountaineering has become more hazardous, but may instead reflect the growing number of participants.

The highest of mountains is capable of severity, a severity so awful and so fatal that the wiser sorts of men do well to think and tremble even on the threshold of their high endeavour—George L. Mallory

Mountains are inherently dangerous. The combination of falling barometric pressure, temperature and humidity, together with increases in solar radiation and wind speed, mean that those heading to the mountains often encounter an extraordinary set of physical challenges. Clearly, managing these challenges can prove enormously satisfying, however in some cases these factors can contribute to serious injury or even death. This review identifies the mortality rates of those who undertake recreational activities in the mountains and examines the aetiology that lies behind them.
trekkers. Mountaineering mortality rates in North America lie between these figures. On Denali, the highest mountain in Alaska, 0.508 deaths have been reported for every 100 mountaineers who register with the National Park Service. Meanwhile on Mt Rainier, a popular 4932 m peak in the north west state of Washington, 50 deaths were reported between 1977 and 1997. Since approximately 8000 attempts are made on this mountain each year, an estimated mortality rate of 0.11 per 100 mountaineers has been calculated.

In recent years the mortality rate calculated in this way has appeared to decline. According to Hawley and Salisbury, the mortality rate between 1950 and 1989 in the Nepali Himalaya appeared to decline. According to Hawley and Salisbury, the mortality rate between 1950 and 1989 in the Nepali Himalaya between 1990 and 2006. This reduction has also been seen on other mountains such as Denali and Mount Rainier. However, despite these reductions, the mortality rate associated with mountaineering remains high. Not only is it greater than that of other mountain activities, but it is also higher than the mortality rate for other high risk sports such as hang gliding, parachuting and boxing that are undertaken in the USA that were calculated by dividing the total number of individuals who have climbed above a designated base camp and multiplying by 100.

Table 1: The mortality rate for mountaineers climbing above 6000 m in the Nepali Himalaya between 1990 and 2006

<table>
<thead>
<tr>
<th>Peak altitude range</th>
<th>Individuals above base camp</th>
<th>Deaths above base camp</th>
<th>Mortality rate (/100 individuals above base camp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000–6499</td>
<td>712</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6500–6999</td>
<td>4509</td>
<td>34</td>
<td>0.75</td>
</tr>
<tr>
<td>7000–7499</td>
<td>3814</td>
<td>48</td>
<td>1.26</td>
</tr>
<tr>
<td>7500–7999</td>
<td>961</td>
<td>11</td>
<td>1.14</td>
</tr>
<tr>
<td>8000–8499</td>
<td>9365</td>
<td>116</td>
<td>1.23</td>
</tr>
<tr>
<td>8500–8850</td>
<td>10780</td>
<td>122</td>
<td>1.11</td>
</tr>
<tr>
<td>Total</td>
<td>30141</td>
<td>331</td>
<td>1.10</td>
</tr>
</tbody>
</table>

The mortality rate is calculated by dividing the number of deaths by the total number of individuals who have climbed above a designated base camp and multiplying by 100.

The number of deaths for every 1 000 000 days of exposure to a specific mountain activity

Among skiers and snowboarders, the mortality rate calculated by this method ranges from 0.11 in long distance cross country ski races in Sweden to 2.46 deaths per million exposure days in the downhill ski resorts of Utah, USA. The mortality rates of trekkers and mountaineers is greater, with 11 deaths occurring during trekking in Nepal and 1870 deaths per 1 000 000 exposure days of mountaineering on Mt Cook.

While the mortality rate of trekkers in Nepal is similar to that found in other activities such as marathon running and motorcycling, the mortality rate of mountaineers is significantly higher. This is underlined by a recent follow-up study conducted on 46 experienced mountaineers in New Zealand: in just years, four (9%) had died during mountaineering and seven (15%) had retired from the sport.

Despite the widespread use of this calculation, obtaining the mortality rate in this way can be problematic. In small regional studies, information on the number of deaths is usually obtained from local sources. Although these give a highly accurate summary of the deaths that occur within these areas, they can sometimes overlook those who die later following a successful evacuation. Larger studies are also limited, since they often rely upon coroners’ reports and assume that the location and activity of the victim before the fatal event is accurately recorded. Calculating the total number of exposure days is also problematic. In studies that calculate skiing and snowboarding mortality, the denominator for the calculation is obtained from either an estimate obtained from a local source such as a park service or from the numbers of admission tickets sold for a given year. These figures tend to ignore those who either work in the region, local residents who possess season tickets, or those who choose to ski off piste and away from designated downhill runs. Despite including the deaths of 100 cross country skiers in their analysis, Xiang et al acknowledged that it was impossible to measure accurately the amount of exposure these individuals had encountered.

Studies that have focused upon trekking and mountaineering have also encountered methodological difficulties. Avery et al used the data from the national census in order to identify the amount of time the population of England and Wales spent mountaineering. Clearly, this relies upon an individual’s own estimate and can therefore be prone to some degree of inaccuracy. Other studies have either used the number of days spent on the mountain or the nights spent in a hut to estimate the amount of exposure. Malcolm, in his study of deaths among mountaineers on Mt Cook, assumed that for every day of mountaineering three nights were spent in one of seven huts on the mountain. While this may have been a close approximation to the degree of mountaineering exposure, Malcolm focused upon a period of time when the mountaineer was faced with the greatest danger. It was therefore inevitable that the results from Mt Cook should appear so striking. In contrast, McIntosh et al in their recent study of mortality on Denali included the total amount of time spent on the mountain. This not only included time spent on the dangerous upper slopes, but also the approach to the mountain from the base camp at 2100 m. Clearly, mortality rates will vary depending upon the locations investigators wish to include. Inevitably this makes comparisons between different studies difficult to make.

Both of the methods described here have significant flaws. However, both can be useful and provide answers to a number of questions. Future studies should consider using both
Review

Table 3 A summary of those studies that have calculated mortality rate per 1 000 000 exposure days for specific mountain activities

<table>
<thead>
<tr>
<th>Authors</th>
<th>Location</th>
<th>Era</th>
<th>Activity</th>
<th>Deaths</th>
<th>Age (years)</th>
<th>% Male</th>
<th>Mortality rate (1/1 000 000 exposure days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morrow (1988)</td>
<td>Vermont, USA</td>
<td>1979–1986</td>
<td>Skiing</td>
<td>16</td>
<td>30</td>
<td>81</td>
<td>0.67</td>
</tr>
<tr>
<td>Sherry and Clout (1988)</td>
<td>Snowy Mountains, Australia</td>
<td>1956–1987</td>
<td>Skiing</td>
<td>29</td>
<td>35</td>
<td>86</td>
<td>0.87</td>
</tr>
</tbody>
</table>

The range of annual mortality rates obtained per 1 000 000 skier visits to Colorado between 1980 and 2001. †Calculated by McIntosh et al.

Table 4 Summary of the causes of death found in studies of skiers and snowboarders

<table>
<thead>
<tr>
<th>Author</th>
<th>Location</th>
<th>Activity</th>
<th>Deaths</th>
<th>Collision</th>
<th>Fall</th>
<th>Avalanche</th>
<th>Hypothermia</th>
<th>Medical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farahmand et al (2007)</td>
<td>Vasaloppet, Sweden</td>
<td>Cross country skiing</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Morrow (1988)</td>
<td>Vermont, USA</td>
<td>Skiing</td>
<td>16</td>
<td>6</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sherry and Clout (1988)</td>
<td>Snowy Mountains, Australia</td>
<td>Skiing</td>
<td>29</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Tough and Butt* (1993)</td>
<td>Alberta, Canada</td>
<td>Cross country skiing</td>
<td>19</td>
<td>1</td>
<td>2</td>
<td>15</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Tough and Butt* (1993)</td>
<td>Alberta, Canada</td>
<td>Skiing</td>
<td>19</td>
<td>12</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Weston et al (1977)</td>
<td>Utah, USA</td>
<td>Skiing</td>
<td>10†</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Wright (1988)</td>
<td>USA</td>
<td>Nordic ski jumping</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Xiang et al (2003)</td>
<td>Colorado, USA</td>
<td>Cross country skiing</td>
<td>100‡</td>
<td>5</td>
<td>2</td>
<td>84</td>
<td>NK</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>386</td>
<td>145</td>
<td>41</td>
<td>109</td>
<td>8</td>
<td>42</td>
</tr>
</tbody>
</table>

*Only deaths associated with traumatic injuries or hypothermia were included. †One death was attributed to suicide following a single gunshot wound to the head. ‡Xiang et al’s study was divided into deaths that occurred to either downhill skiing and snowboarding or cross country skiing. The remaining deaths in this study were attributed to either “general skiing accidents” or “other/unknown”. NK, not known.

approaches in order to provide the most comprehensive analysis.

MECHANISMS OF MOUNTAIN MORTALITY

While no single method of measuring mortality rate is ideal, it is clear that a considerable number of deaths occur in mountain regions. How do they die?

Trauma

It is perhaps not surprising to learn that skiers, snowboarders, trekkers and mountaineers die in different ways. Fatalities in downhill skiing and ski jumping tend to occur as a result of a fall or a collision with either a tree, post or other skiers (table 4).10 20 22–25 28

In these cases deaths tend to be due to multiple blunt trauma to the head, chest and abdomen.29 30 Deaths among trekkers and mountaineers are largely due to falls and tend to result in a similar pattern of injury.12–15 31 In a study of mountaineering and rock climbing injuries in the USA, Addiss and colleagues were able to demonstrate that the median distance of a fatal fall was 91 m compared to a non-fatal fall of just 9 m (p<0.001). The risk of death was influenced by the angle of the slope, the landing surface and the efforts made by the victim and climbing partner to arrest the fall.32

The pattern of deaths among mountaineers is also related to the time spent in certain areas. Sherpa mountaineers working on the Nepali side of Mt Everest spend considerable amounts of time carrying equipment through the dangerous Khumbu Icefall and other avalanche prone areas in the Western Cwm. This leads to a considerable number of deaths caused by falling snow, ice and rock on lower sections of the route.33

Cross country skiers and mountaineers are at a much greater risk from the dangers of rockfall, icefall and avalanches than those who prefer to stay within the confines of conventional ski runs. Between 1994 and 2003, the median annual mortality from snow avalanches in Europe and North America was 141.34 The majority of these victims died from asphyxia rather than the result of traumatic injuries that had occurred during snow burial.34 In a recent analysis of 86 avalanche fatalities, a team from the University of Innsbruck identified a traumatic cause of death in only two victims (5.6%). The remainder were found to have died from either hypothermia (2.8%) or asphyxia (91.6%).34

Following a complete snow burial, death from asphyxia is rapid with approximately 60% of those buried in an avalanche dying within 15–35 min.35

Cold injury

Since ambient temperature falls by approximately 5.5°C for every 1000 m of altitude, it is inevitable that the cold will contribute to a number of deaths in the mountains.2 Deaths caused by hypothermia tend to occur as a result of an unexpected event such as a musculoskeletal injury or an episode
of high altitude illness. Alternatively, environmental factors such as an avalanche burial or deteriorating weather conditions can also be responsible. In some cases equipment failure has also been blamed. Damage to skis and their bindings can leave cross country skiers stranded in remote areas, while loss of crampons or ice axes can slow a mountaineer’s descent and increase the time spent exposed to the cold.

High altitude illness
An ascent to altitude results in a fall in barometric pressure and a subsequent reduction in the partial pressure of inspired oxygen. In order to cope with this change the human body undergoes a process of acclimatisation. In those who ascend rapidly, this can be incomplete and result in the development of life-threatening conditions such as high altitude pulmonary oedema (HAPE) and high altitude cerebral oedema (HACE). In a study of Indian soldiers, 5.7% of those who were flown to altitudes of 3500 m contracted HAPE compared to just 0.3% who completed the same journey by road. The incidence of these conditions also increases with altitude. On arrival at 3065 m, 0.1% of lowland residents had evidence of HAPE compared to 5.3% at 4486 m. In a number of cases, HAPE and HACE coexist. Up to 20% of those who present with HAPE also demonstrate signs of HACE, while up to 50% of those who died from HAPE also had evidence of HACE on autopsy. Historically, HAPE and HACE have been thought to be responsible for the majority of deaths that occur at altitude. While evidence collected in this review would suggest that this is not the case, it is possible that HAPE and HACE contribute in some part to those deaths attributed to trauma or hypothermia. In the early stages of HACE, changes in consciousness, abnormalities in motor function and the presence of visual disturbances can occur, while in HAPE, lethargy, malaise and breathlessness are commonly seen. Clearly these symptoms can have an adverse effect on anyone undertaking physical activities at altitude and have the potential to increase the risk of a fatal fall or prolong a period of cold exposure that subsequently results in hypothermia.

Sudden cardiac death
While HAPE and HACE tend to figure highly among non-traumatic deaths on the highest peaks, at lower altitudes sudden cardiac death (SCD) appears to be more prevalent. SCD is defined as an “unexpected, non-traumatic death that occurs within one hour of the onset of symptoms”, and accounts for up to 52% of deaths during downhill skiing and cross country skiing. It is assumed that 8 h of hiking was equivalent to 1 day of activity in the mountains.

CONCLUSION
Although only a small number of deaths occur in the mountain environment, their unexpected nature raises a considerable amount of concern in wider society. In order to devise strategies to prevent these deaths, it is important that mortality rates can be calculated. However, differences in the activities, environmental conditions and methods of calculation often make these results difficult to interpret. Nevertheless, a number of conclusions can be drawn. Firstly, the mortality rate among skiers and snowboarders occupies a narrow range: between 0.11–2.46 deaths for every million days of exposure. Secondly, the mortality rate for mountaineering is greater and varies enormously: 2.3 to 1870 deaths for every million days of activity.
1. Mountain regions:
 A. Occupy 40 million km²
 B. Account for 2.7% of the earth’s surface
 C. Attract 100 million visitors for work and recreation each year
 D. Above 8000 feet (2667 m) are home to 0.38 million people
 E. In Nepal have seen the numbers of visitors fall over the last two decades

2. The mortality rate calculated by dividing the number of deaths by the total number of individuals exposed:
 A. Has increased among US mountaineers over the last 50 years
 B. Is higher in swimmers than mountaineers
 C. Has been falling on Denali
 D. Ranges from 10 to 12.6 deaths for every 100 mountaineers climbing above 6000 m in the Himalayas
 E. Is 13% on Mt Everest

3. In the mountains:
 A. Deaths caused by avalanches are normally due to trauma
 B. Deaths among sherpas on Mt Everest tend to occur low on the mountain
 C. Cross country skiers and mountaineers are at a much greater risk from the dangers of rockfall, icefall and avalanches than those who prefer to stay within the confines of conventional ski runs
 D. Ambient temperature falls by approximately 0.5°C for every 1000 m of altitude
 E. 60% of those buried in an avalanche die within 15–35 min exposure. Finally, the difference between the two groups may be explained by not only the activity itself but also by the environment each activity operates in. The ski resort is likely to be a far safer place than the remote mountain cliff!

 Fortunately, there is now evidence demonstrating that in recent years mortality rates have begun to fall. Nevertheless, the mountain remains a dangerous place and care must be taken by anyone who straps on skis or crampons and ventures into them.

4. High altitude illnesses:
 A. Are the result of a fall in the partial pressure of inspired oxygen
 B. Are responsible for the majority of non-traumatic deaths in the mountains
 C. Are more common following a slow ascent
 D. Rarely coincide
 E. May contribute to other mechanisms of death

5. Sudden cardiac death:
 A. Has been defined as an “unexpected, non-traumatic death that occurs within 24 h of the onset of symptoms”
 B. Has been shown to account for up to 52% of deaths during downhill skiing and 30% of mountain hiking fatalities
 C. Is due to coronary artery disease in the majority of cases
 D. Risk is reduced in those who exercise regularly
 E. In the mountain environment increases dramatically in men aged over 34 years

Competing interests: None.

REFERENCES

Answers

1. A (T); B (F); C (T); D (F); E (F)
2. A (F); B (F); C (T); D (F); E (T)
3. A (F); B (T); C (T); D (F); E (T)
4. A (T); B (F); C (F); D (T); E (T)
5. A (F); B (T); C (T); D (T); E (T)
Mountain mortality: a review of deaths that occur during recreational activities in the mountains
J S Windsor, P G Firth, M P Grocott, G W Rodway and H E Montgomery

doi: 10.1136/pgmj.2009.078824

Updated information and services can be found at:
http://pmj.bmj.com/content/85/1004/316

These include:
References
This article cites 45 articles, 5 of which you can access for free at:
http://pmj.bmj.com/content/85/1004/316#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Editor's choice (147)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/