Do junior doctors know where to insert chest drains safely?

J R Griffiths, N Roberts

Background: The safe insertion of a chest drain is a skill doctors across specialties require. Incorrect placement can lead to significant morbidity and even mortality.

Methods: This audit surveyed junior doctors working in a teaching hospital about their specialty and level of experience with intercostal drains. They were then asked to mark on a photograph where they would insert a chest drain for a pneumothorax in a non-emergency situation.

Results: Of the 55 junior doctors surveyed, 45% were outside the safe area of chest drain insertion as defined by the British Thoracic Society. The most common error was a choice of insertion site too low (24%).

Conclusions: In this audit 45% of juniors surveyed would have placed a chest drain outside the safe triangle recommended by the British Thoracic Society. The common mistake of a choice of insertion site too low should be discussed in postgraduate teaching programmes.

The doctors were then asked to mark on a diagram of the chest wall (fig 1) where they would insert a chest drain for a pneumothorax in a non-emergency situation. The results were analysed by a specialist registrar in cardiothoracic surgery to decide whether they were inside the triangle of safety.

RESULTS

Of the 55 doctors, 20 were PRHOs, 33 were SHOs (year 1 to year 6), and two were SpRs. Ten doctors were working in accident and emergency (A&E), 25 in a surgical specialty, and 20 in a medical specialty.

Figure 2 shows the results of chest drain placement. Twenty five doctors (45%) marked the diagram outside the safe triangle. The commonest site of incorrect placement was too low (24%).

Of the PRHOs questioned, six (30%) were correct and 14 (70%) were incorrect. Twenty two SHOs (67%) were correct and 11 (33%) incorrect and both SpRs correctly marked the diagram (fig 3).

In terms of experience of cardiothoracic surgery or respiratory medicine, where there is greater exposure to patients requiring ICD insertion, 27 (49%) doctors had experience of one or both specialties. All eight doctors with experience of cardiothoracic surgery were correct. Of the 15 with respiratory medicine experience, six (40%) were correct and nine (60%) incorrect. Four doctors had experience of both specialties—three were correct and one incorrect. Of the 28 doctors with no experience, 13 (46%) were correct and 15 (54%) incorrect (fig 4).

With regard to previous experience of ICD insertion, 11 doctors had no experience; 16 had observed ICD insertion; 11 had performed supervised insertion, and 17 doctors had inserted chest drains without supervision.

Of the 11 with no experience, three (27%) were correct and eight (73%) incorrect. Five of those doctors who had observed ICD insertion were correct (31%) and 11 were incorrect.
Eight doctors who had performed ICD insertion under supervision correctly located the site for insertion (73%) but three (27%) did not. Three of the 17 doctors who had performed unsupervised chest drain insertion failed to locate the correct site for insertion (18%), however most doctors in this category were correct (14 of 17, 82%) (fig 5).

DISCUSSION

The BTS guidelines for the insertion of a chest drain state that in current hospital practice chest drains are used in many clinical settings and suggest that doctors in most specialties need to be capable of their safe insertion. This study shows that many junior doctors are unaware of the anatomical landmarks for the safe insertion of intercostal chest drains.

It should be noted that insertion of a chest drain is not the mainstay of treatment for all pneumothoraces, observation only is advised for small primary pneumothoraces, which are asymptomatic and simple aspiration is recommended as the first line treatment of all primary spontaneous pneumothoraces requiring intervention.

However, in large secondary pneumothoraces, especially in patients over 50 years of age, simple aspiration is associated with a higher risk of failure and hence tube drainage is recommended as appropriate initial treatment. It should also be noted that in the most recent BTS guidelines a large pneumothorax is defined by the presence of a rim of air greater than 2 cm between the chest wall and lung margin. This is a significant change from the 1993 guidelines in which the size classification used tended to undersize the volume of pneumothorax.

Chest drain insertion is also the mainstay of treatment for the management of large traumatic pneumothoraces, and is certainly indicated for a tension pneumothorax, which has been initially decompressed. Any size of pneumothorax in a patient receiving positive pressure ventilation is also an indication for chest drain insertion.

Hence we agree with the BTS guidelines suggestion that doctors in most specialties should be capable of safe chest drain insertion.

This audit shows that 45% of junior doctors surveyed would have placed a chest drain outside the safe anatomical triangle recommended by the BTS, this is clearly an area for concern and suggests postgraduate education regarding chest drain insertion could be improved.

We believe postgraduate teaching programmes should make training on the insertion of intercostal drains a priority for all specialties.

One possible way of achieving this, at least on a local scale, is to ensure that a teaching session is devoted to the insertion of chest drains, including practical workshops using the clinical skills facility and led by cardiothoracic surgeons. After this is implemented into the postgraduate teaching curriculum, a subsequent re-audit would complete the audit cycle.

Authors’ affiliations

J R Griffiths, N Roberts, Department of Cardiothoracic Surgery, Northern General Hospital, University Hospitals Sheffield, Sheffield, UK
Funding: none.
Conflicts of interest: none declared.

Correspondence to: Dr J Griffiths, Department of Accident and Emergency, Rotherham General Hospital, Moorgate Road, Rotherham, South Yorkshire S60 2UD, UK; jrgriffiths@doctors.org.uk

Submitted 8 June 2004
Accepted 1 September 2004

REFERENCES
1 Abad C, Padron A. Accidental perforation of the left ventricle with a chest drain tube. Tex Heart Inst J 2002;29:143.
Do junior doctors know where to insert chest drains safely?

J R Griffiths and N Roberts

doi: 10.1136/pgmj.2004.024752

Updated information and services can be found at:
http://pmj.bmj.com/content/81/957/456

These include:

References
This article cites 10 articles, 1 of which you can access for free at:
http://pmj.bmj.com/content/81/957/456#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Epidemiology (401)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/