Pathogenesis and treatment of *Clostridium difficile* infection

I Tonna, P D Welsby

This paper reviews the pathogenesis and management of *Clostridium difficile* diarrhoea, in particular the management of recurrent episodes.

Clostridium difficile is a Gram positive, spore forming anaerobic bacillus that in contrast with popular belief is not a normal commensal of the adult gastrointestinal tract. The organism is acquired from an exogenous source and given certain conditions can induce disease. Consequences range from asymptomatic carriage, dehydration, metabolic changes, bowel perforation, and haemorrhage. The mortality is highest in the elderly population and is about 1.3% of all hospitalised cases of _C difficile_ diarrhoea. There are five major patterns of _C difficile_ induced disease (see table 1).

PATHOGENESIS

There are two prerequisites for developing _C difficile_ associated diarrhoea: disruption of the normal gastrointestinal flora, causing diminished colonisation resistance favouring _C difficile_, and acquisition of the organism from an exogenous source. Other factors include host susceptibility, virulence of the _C difficile_ strain concerned, and the nature and extent of antimicrobial exposure.

In normal people there are more than 500 species of bacteria in the colon. A gram of faeces normally contains up to 10^{12} bacteria that resist colonisation and impair multiplication of _C difficile_. Lactobacilli and group D enterococci display most antagonistic activity, and eradication or reduction of such bacteria by antibiotics creates an environmental vacuum for _C difficile_ to fill. People have significant variations in their intestinal microflora and the elderly population are most at risk of _C difficile_ diarrhoea, possibly because their protective bacteroides diversity is more likely to be affected by antibiotics, which then permit growth of _C difficile_.

There are more than 400 strains of _C difficile_. Infection is acquired faeco-oraally and _C difficile_ multiplies in the colon. Only toxin producing strains produce disease. Toxins are endocytosed by colonic epithelial cells and damage the actin cytoskeleton, causing cell death. There are two toxins that together are normally required to cause _C difficile_ associated diarrhoea. Toxin A disrupts colonic mucosal cell adherence to colonic basement membrane and damages villous tips. Toxin B enters the cell by endocytosis and induces apoptosis. Toxin B is 1000 times more potent in its cytotoxic effect than toxin A. Both toxins stimulate monocytes and macrophages, which in turn release interleukin 8, resulting in tissue infiltration with neutrophils. However, infection with "virulent" strains of toxin producing _C difficile_ can be asymptomatic implying that other factors, including the environment within the gut are important.

The extent of clinical manifestations depends on the immune response to _C difficile_. Patients with low anti-toxin A IgG levels manifest more severe disease unlike those with higher levels who usually recover spontaneously.

TREATMENT

In mild cases, oral rehydration plus withdrawal of the causative antibiotic is often successful. Identification of _C difficile_ or its toxins should not lead to reflex prescription of metronidazole or vancomycin. Oral rehydration alone may succeed because it allows host immunological responses to deal with the infection and does not create additional ecological vacuums for _C difficile_ to re-emerge. In all cases the causative antibiotic is often successful. Parenteral antibiotic therapy is less effective than the oral route. Intravenous metronidazole is of dubious efficacy. Although there were case reports of some clinical benefit when used in patients in whom oral administration was impractical, further trials are needed to assess the effectiveness of intravenous compared with oral metronidazole. Vancomycin is not excreted into or absorbed from the gastrointestinal lumen. Consequently, parenteral administration of the drug will not reach the site of infection. Nasogastric tube or enema administration may be necessary.

There are two main reasons for recurrences after successful treatment with metronidazole or vancomycin:

1. Neither antibiotic eliminates _C difficile_ spores. Once metronidazole or vancomycin are stopped spores will germinate and _C difficile_ will proliferate in the ecological vacuum with return of diarrhoea.

2. Administration of any antibiotic may induce expression of _C difficile_ virulence factors that will be most developed just before the antibiotic is stopped. Hence, diarrhoea will recur after the treatment is stopped. It is known that toxin production occurs after the end of the exponential growth phase, whereas much lower levels are seen in early and mid-exponential growth phase. In such situations, the relapse would be expected to occur soon after stopping metronidazole or vancomycin or even during the course of treatment.
Recurrence rates of *C. difficile* diarrhea vary between 15% to 35% but may be as high as 55%.22–24 Most relapses occur within two months.23 Recurrences can occur when original strains re-establish themselves or if infection with a different strain of *C. difficile* occurs.

TREATMENT OF SYMPTOMATIC RELAPSES OF *CLOSTRIDIUM DIFFICILE* ASSOCIATED DIARRHOEA

Symptomatic return occurs when diarrhea reappears along with positive tests for *C. difficile* toxin in the faeces. The diagnosis is made when *C. difficile* toxin is identified in the stools. The presence of the organism in the stool does not necessarily mean that the diarrhea is attributable to *C. difficile*. There are a number of options for treating relapses of *C. difficile* diarrhea:

1. If diarrhea is mild, simple supportive treatment is advocated to allow the intestinal flora to stabilise, allowing the diarrhea to settle.16

2. If diarrhea is severe, another course of oral metronidazole or vancomycin should be given.16

3. (3) There are 10 other options to be considered in problematic relapses (box).

Further courses of metronidazole or vancomycin have been administered either as:

- A prolonged repeat of treatment for 10–16 days.20 High dose vancomycin (2 g/day) was associated with a lesser rate of recurrence of diarrhea than medium/low dose vancomycin (44% v 71%–54%). Medium dose metronidazole (1.5 g/day) had a recurrence rate of 40% whereas it was 44% with the low dose form (<1 g/day). The number of patients treated with high dose metronidazole (n = 2) did not have sufficient power to reach statistical significance.

- A tapering regimen with metronidazole or vancomycin started at a high dose (>2 g/day of vancomycin or 2 g/day of metronidazole).20 The vancomycin dose was decreased over 10–30 days to a dose of 125 to 750 mg/day depending on the preference of the physician. The best response was found in those cases given a starting dose of vancomycin 500 mg/day tapering to 125 mg/day over three weeks. This was associated with a 20% recurrence of diarrhea. The number of patients treated with tapering doses of metronidazole (n = 1) was too low to be commented upon.

- A pulsed regimen.20 Vancomycin was given in pulses 125–500 mg doses every three days for three weeks (dose being determined by the responsible physician). When the 500 mg pulse was used this was associated with the lowest recurrence rate of diarrhea (14%). Only one patient was given pulsed metronidazole, thus no clinically significant data could be extrapolated.

- A combination of the above.20 Some of the patients were first treated with a tapering regimen of vancomycin followed by short courses of pulsed doses for 3–10 days. The recurrence rate was 20%.

The best results were seen when pulsed regimens were used. Pulsed regimens may be superior because they allow spores to germinate during the antibiotic free period with the resulting *C. difficile* being killed by the next pulse and allowing the normal colonic flora to re-establish itself during the pulse free period.20

Colestyramine binds *C. difficile* toxin but is of unproved clinical benefit and therefore cannot be recommended.21

Oral probiotic therapy (use of live non-pathogenic bacteria to “restabilise the gut flora” and provide colonisation resistance against *C. difficile*) uses organisms resistant to gastric acid. *Lactobacillus acidophilus* and *Saccharomyces boulardii* produce proteases that digest *C. difficile* toxins.20 The initial trial used known quantities of *S. boulardii*. Use of probiotic yoghurts with similar organisms (for example, *S. cerevisiae*) may not have the same effect.20 The optimum dose of any probiotic is unknown, but a study using 1 g/day of *S. boulardii* with 2 g/day vancomycin for 28 days was found to be 67% more effective than

<table>
<thead>
<tr>
<th>Infection pattern</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic carriage (up to 5% of healthy adults, 20% in patients hospitalised for one week, 50% in patients hospitalised for four weeks)</td>
<td></td>
</tr>
<tr>
<td>Most common occurrence, the infected person acts as a reservoir of infection</td>
<td></td>
</tr>
<tr>
<td>“Simple” antibiotic associated diarrhoea (20% of all cases with presumed antibiotic associated diarrhoea)</td>
<td></td>
</tr>
<tr>
<td>Possibility of dissemination of organisms within hospital environments</td>
<td></td>
</tr>
<tr>
<td>Diarrhoea without pseudomembrane formation (20% have proximal disease undetected on routine flexible sigmoidoscopy)</td>
<td></td>
</tr>
<tr>
<td>No systemic symptoms</td>
<td></td>
</tr>
<tr>
<td>Pseudomembranous enterocolitis (10% of C. difficile associated diarrhoea)</td>
<td></td>
</tr>
<tr>
<td>Common during treatment with antibiotics</td>
<td></td>
</tr>
<tr>
<td>Fulminant colitis (3% of C. difficile associated diarrhoea)</td>
<td></td>
</tr>
<tr>
<td>Diarrhoea usually stops after the antibiotic is withdrawn</td>
<td></td>
</tr>
<tr>
<td>Abdominal pain</td>
<td></td>
</tr>
<tr>
<td>Typical elevated yellowish plaques on colonoscopy</td>
<td></td>
</tr>
<tr>
<td>High risk of complications such as perforation, megacolon, or death</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical range of Clostridium difficile infections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infective pattern</td>
</tr>
<tr>
<td>Asymptomatic carriage</td>
</tr>
<tr>
<td>“Simple” antibiotic associated diarrhoea</td>
</tr>
<tr>
<td>Diarrhoea without pseudomembrane formation</td>
</tr>
<tr>
<td>Pseudomembranous enterocolitis</td>
</tr>
<tr>
<td>Fulminant colitis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment options of severe relapses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tapering doses of vancomycin20</td>
</tr>
<tr>
<td>Pulsed regimen of vancomycin20</td>
</tr>
<tr>
<td>Use of colestyramine25</td>
</tr>
<tr>
<td>Use of probiotics26–29</td>
</tr>
<tr>
<td>Combined use of probiotics with high dose vancomycin29</td>
</tr>
<tr>
<td>Intravenous gammaglobulin administration31–34</td>
</tr>
<tr>
<td>Faecal enemas35</td>
</tr>
<tr>
<td>Whole gut lavage36</td>
</tr>
<tr>
<td>Stool administered via colonoscope after whole gut lavage35</td>
</tr>
</tbody>
</table>
vancomycin alone. Probiotics are attractive therapeutic options because they are inexpensive, are palatable, and rarely cause harm except perhaps in the immunocompromised. It is possible that patients who develop relapses are a subgroup of those infected who are slow to mount immunoglobulin responses, especially those treated early with vancomycin or metronidazole. The larger the immunoglobulin response to C difficile toxin A during initial episodes of diarrhoea, the lower the rates of recurrent diarrhoea. Patients with low levels of immunoglobulin G to toxin A had a 48-fold increase in risk of relapse. Passive immunisation against C difficile might be possible because normal pooled human immunoglobulin preparations contain significant titres of C difficile antigens. Five children were treated successfully with intravenous immunoglobulin, and adult successes have also been reported.

Although aesthetically unpleasant, C difficile diarrhoea can be treated by introducing normal intestinal flora in faeces from healthy persons via a colostomy after whole gut lavage or even via a nasogastric tube.

C AN C DIFFICILE DIARRHOEA BE PREVENTED?

Prevention entails:

1. avoiding exposure to C difficile and its spores
2. avoiding the use of unnecessary antibiotics
3. supporting the immune system to deal with C difficile or its toxins

C difficile spores can survive up to five months in the environment and transmission often occurs in hospitals where C difficile infected patients are close to susceptible patients. Transmission occurs via the hands of healthcare personnel. Hand washing, glove use, and appropriate isolation of those infected are important.

Antibiotics should be given only when indicated and should be avoided if possible for the two months after successful treatment of C difficile diarhoea. Although the number of clinical trials are small, there is evidence that administration of probiotics may prevent antibiotic associated diarrhoea when given together with antibiotics. On the other hand, use of these live organisms to treat antibiotic associated diarrhoea remains to be proved.

Anti-toxin A IgG induced by vaccination was protective in hamsters and a C difficile toxoid vaccine resulted in high toxin A IgG in humans after four intramuscular doses. Whether such antibody responses confer immunity against symptomatic C difficile diarrhoea, particularly in the elderly population, is unknown. Even if a vaccine were available, to whom should it be given? Should it be given to all elderly patients (and if so what is the cut off age?), to all patients after a first episode of C difficile diarrhoea, or to the whole population? Cost effectiveness would need to be considered.

Authors’ affiliations
Tonna, P D Welsby, Infectious Diseases Unit, Western General Hospital, Edinburgh, UK

REFERENCES

11 Poxton IR, McCoubrey J, Black CJ. The pathology of Clastridium difficile Clinical Microbiology and Infection 2001; 7: 421–4
Pathogenesis and treatment of *Clostridium difficile* infection

I Tonna and P D Welsby

Postgrad Med J 2005 81: 367-369
doi: 10.1136/pgmj.2004.028480

Updated information and services can be found at:
http://pmj.bmj.com/content/81/956/367

These include:

References
This article cites 37 articles, 14 of which you can access for free at:
http://pmj.bmj.com/content/81/956/367#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.