Phytopharmacovigilance

Challenges for phytopharmacovigilance

E Ernst

It is important that the safety of herbal medicines is scientifically addressed

Throughout history, plants have been used for medicinal purposes and, during the last three decades, we have witnessed a most remarkable revival of herbal medicine.1 Germany is the country with the largest per head consumption of herbal medicines. In 2002, the 100 best selling products achieved a total turnover of 420 million Euros.2 This high level of popularity means, among other things, that we ought to ensure that no harm is done. Even though the media frequently try to persuade us otherwise, not all herbal medicines are free of adverse effects (table 1).3–5 Phytopharmacovigilance—that is, the systematic research of the safety of herbal medicines—has therefore become an important topic. In this article, I will briefly outline some of the challenges encountered in this area.

Herbal medicines are usually not patentable. Therefore, keen commercial impetus for systematic research rarely exists. Consequently there is a lack of hard data on herbal safety.3 Much of the available evidence is either built on non-clinical investigations4 or on incomplete and thus inconclusive clinical data.5 Depending on the circumstances, both under-reporting6 and over-reporting7 of herbal adverse effects have been suspected, and the unduly strong influence of the press in this area is a well recognised aggravating factor.8 Users of herbal medicines often do not inform their doctor, and conventional healthcare professionals sometimes lack sufficient knowledge of herbal medicine to advise their patients responsibly. As a consequence, the evidence regarding the nature and incidence of adverse effects caused by herbal medicines is woefully incomplete.

In most countries, herbal medicines are not regulated as medicines but marketed as dietary supplements. The quality of some products has repeatedly been shown to be suboptimal,9 some of the most extreme examples include Asian herbal mixtures which can be contaminated (for example with heavy metals, micro-organisms, pesticides) or adulterated with powerful prescription drugs.10 Even top quality herbal medicines suffer from a degree of product variability. This may not be altogether avoidable, considering that the raw material for herbal medicines obviously varies according to factors such as climate, soil, and season, method of harvesting, drying, storing, or extraction. Product quality will thus always be a considerable challenge to phytopharmacovigilance.

Product identification can be a further obstacle. Many commercially available products contain multiple ingredients. For instance, Sinupret (Bionorica, Germany), the best selling herbal medicinal product in Germany (total sales in 2002 were 22.6 million Euros), contains five different medicinal plants.2 Asian herbal mixtures typically contain about twice that amount. In such cases, it is often impossible to discover which ingredient caused a reported health problem. Brand names and sometimes even plant nomenclature suffer from a babylonian confusion.9 One herbal extract can be contained in dozens of different brands, and not infrequently identical brand names contain different mixtures of plants. Labelling of commercial products is often less than sufficient. Associations between one herbal ingredient and a reported adverse effect can therefore be difficult, sometimes impossible to establish.

Consumers of herbal medicines tend to be affluent, middle aged, and chronically ill.1 They are thus likely to combine herbal medicines with prescriptive drugs. Herb-drug interactions have thus become an important subject.3–5 The list of herbal medicines with potential for such interactions seems endless.11 Yet only relatively few clinical cases of herb-drug interactions have been documented in the medical literature.11 It is unclear whether this indicates that, in clinical practice, interactions occur only rarely or whether it suggests that not looking for such events means not recognising them.

In conclusion, phytopharmacovigilance is a new area of scientific inquiry. Because of the current popularity of herbal medicines, it has become important for public health. Phytopharmacovigilance faces numerous challenges. In the interest of the consumer we should address them with scientific rigour.

Table 1

<table>
<thead>
<tr>
<th>Common name</th>
<th>Latin name</th>
<th>Indication</th>
<th>Adverse effects</th>
<th>Potential interactions with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garlic</td>
<td>Allium sativum</td>
<td>Raised blood cholesterol</td>
<td>Allergic reactions, nausea, heartburn</td>
<td>Anticoagulants, antiplatelets</td>
</tr>
<tr>
<td>Hawthorn</td>
<td>Crataegus spp</td>
<td>Heart failure</td>
<td>Nausea, dizziness, fatigue</td>
<td>Cardiac glycosides, antihypertensives, nitrates</td>
</tr>
<tr>
<td>Horse chestnut</td>
<td>Aesculus hippocastanum</td>
<td>Varicose veins</td>
<td>Pruritus, nausea, gastrointestinal symptoms</td>
<td>Anticoagulants</td>
</tr>
<tr>
<td>Kava</td>
<td>Piper methysticum Forster</td>
<td>Anxiety</td>
<td>Liver damage</td>
<td>Drugs acting on CNS</td>
</tr>
<tr>
<td>Maidenhair tree</td>
<td>Ginkgo biloba</td>
<td>Dementia, peripheral vascular disease</td>
<td>Gastrointestinal symptoms, diarrhoea, vomiting, allergic reactions</td>
<td>Anticoagulants</td>
</tr>
<tr>
<td>Saw palmetto</td>
<td>Serenoa repens</td>
<td>Benign prostate hyperplasia</td>
<td>Gastrointestinal complaints, dysuria, decreased libido</td>
<td>Hormonal drugs</td>
</tr>
<tr>
<td>St John’s wort</td>
<td>Hypericum perforatum</td>
<td>Mild/moderate depression</td>
<td>Gastrointestinal symptoms, allergic reactions, fatigue</td>
<td>All drugs metabolised by cytochrome P450 enzyme system</td>
</tr>
</tbody>
</table>

*All examples are of well documented efficacy (data extracted from Ernst et al*).
Clinical Evidence—Call for contributors

Clinical Evidence is a regularly updated evidence based journal available worldwide both as a paper version and on the internet. Clinical Evidence needs to recruit a number of new contributors. Contributors are health care professionals or epidemiologists with experience in evidence based medicine and the ability to write in a concise and structured way.

Currently, we are interested in finding contributors with an interest in the following clinical areas:

- Altitude sickness; Autism; Basal cell carcinoma; Breast feeding; Carbon monoxide poisoning; Cervical cancer; Cystic fibrosis; Ectopic pregnancy; Grief/bereavement; Halitosis; Hodgkins disease; Infectious mononucleosis (glandular fever); Kidney stones; Malignant melanoma (metastatic); Mesothelioma; Myeloma; Ovarian cyst; Pancreatitis (acute); Pancreatitis (chronic); Polymyalgia rheumatica; Post-partum haemorrhage; Pulmonary embolism; Recurrent miscarriage; Repetitive strain injury; Scoliosis; Seasonal affective disorder; Squint; Systemic lupus erythematosus; Testicular cancer; Varicocele; Viral meningitis; Vitiligo

However, we are always looking for others, so do not let this list discourage you.

Being a contributor involves:

- Appraising the results of literature searches (performed by our Information Specialists) to identify high quality evidence for inclusion in the journal.
- Writing to a highly structured template (about 2000–3000 words), using evidence from selected studies, within 6–8 weeks of receiving the literature search results.
- Working with Clinical Evidence Editors to ensure that the text meets rigorous epidemiological and style standards.
- Updating the text every eight months to incorporate new evidence.
- Expanding the topic to include new questions once every 12–18 months.

If you would like to become a contributor for Clinical Evidence or require more information about what this involves please send your contact details and a copy of your CV, clearly stating the clinical area you are interested in, to Claire Folkes (cfolkes@bmjgroup.com).

Call for peer reviewers

Clinical Evidence also needs to recruit a number of new peer reviewers specifically with an interest in the clinical areas stated above, and also others related to general practice. Peer reviewers are health care professionals or epidemiologists with experience in evidence based medicine. As a peer reviewer you would be asked for your views on the clinical relevance, validity, and accessibility of specific topics within the journal, and their usefulness to the intended audience (international generalists and health care professionals, possibly with limited statistical knowledge). Topics are usually 2000–3000 words in length and we would ask you to review between 2–5 topics per year. The peer review process takes place throughout the year, and our turnaround time for each review is ideally 10–14 days.

If you are interested in becoming a peer reviewer for Clinical Evidence, please complete the peer review questionnaire at www.clinicalevidence.com or contact Claire Folkes (cfolkes@bmjgroup.com).
Challenges for phytopharmacovigilance

E Ernst

doi: 10.1136/pgmj.2004.021527

Updated information and services can be found at:
http://pmj.bmj.com/content/80/943/249

These include:

References
This article cites 6 articles, 0 of which you can access for free at:
http://pmj.bmj.com/content/80/943/249#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Complementary medicine (12)
Diet (61)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/