Chest radiographs in the emergency department: is the radiologist really necessary?

M E Gatt, G Spectre, O Paltiel, N Hiller, R Stalnikowicz

Background: The chest radiograph is considered one of the most complex imaging modalities to interpret. Several studies have evaluated radiograph interpretation in the emergency department, and considerable disagreement among clinical physicians and expert radiologists has been observed in the reading of chest films. The interpretation of chest radiographs by emergency department physicians was compared with senior radiologists in discharged patients, and misinterpretations assessed in relation to the physician’s level of training.

Methods: Radiological descriptions of 509 chest radiographs of 507 patients, aged 16–98 years who were discharged from the emergency department, were prospectively reviewed. Missed findings were recorded with regard to the physician’s level of training and experience. The effects of misinterpretations on discharge recommendations were also investigated. Statistical assessment was conducted using the $\chi^2$ test. Interobserver agreement was also tested by the $\kappa$ coefficient.

Results: The sensitivity for detecting different abnormalities in the radiographs ranged from 20% to 64.9% and specificity from 94.9% to 98.7%. Despite the low sensitivities found, there were relatively few clinical implications of the “missed” findings since they were either of a minor nature or appropriate follow up was prescribed. The overall interobserver reliability, assessed by the $\kappa$ coefficient, was 0.40 (95% confidence interval 0.35 to 0.46). These findings did not change significantly by emergency department physician’s level of training.

Conclusions: Emergency department physicians frequently miss specific radiographic abnormalities and there is considerable discrepancy between their interpretations and those of trained radiologists. These findings highlight the importance of routine evaluation of chest radiographs by a well trained radiologist and emphasise the need for improving interpretive skills among emergency department physicians.

METHODS

The chest radiographs of 507 patients (509 examinations) were prospectively collected during a four month period from February to May 2000. The study population consisted of patients aged 16 years and older treated in the emergency department at Hadassah University Hospital, Mount Scopus. The files of discharged patients from the emergency department were reviewed on a daily basis. In contrast to other studies,\textsuperscript{1,11} in order to increase the sensitivity results and minimise bias, emergency department physicians were requested to note whether they consulted with a radiologist before discharging the patient and what their own interpretation was before the consultation was given. There was no standard form or checklist used to record the radiological interpretations.

Data recorded with the radiological examination included the physician’s level of training, the patient’s age, gender, complaints, physical examination, radiograph interpretation by the emergency department physician and senior radiologist, final diagnosis at discharge, and further recommendations for treatment and follow up. Chest radiographs for which there were no interpretations, or discharge letters in which the final diagnosis was not clear, were excluded. A senior radiologist’s interpretation was considered the “gold standard” for the final interpretation. Misinterpretations occurred when the initial emergency department interpretation and that of the final senior radiologist were discrepant. Reviewing the

Abbreviations: CI, confidence interval; CHF, congestive heart failure
Sensitivity and specificity of emergency physicians’ interpretations compared with those of senior radiologists in abnormalities found on chest radiographs

<table>
<thead>
<tr>
<th>Category</th>
<th>Count by emergency department physicians</th>
<th>Count by senior radiologists</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consolidation</td>
<td>40</td>
<td>57</td>
<td>64.9</td>
<td>94.9</td>
</tr>
<tr>
<td>Congestion</td>
<td>19</td>
<td>34</td>
<td>50.0</td>
<td>97.5</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>9</td>
<td>31</td>
<td>25.8</td>
<td>98.7</td>
</tr>
<tr>
<td>Chronic changes*</td>
<td>8</td>
<td>37</td>
<td>20.0</td>
<td>97.0</td>
</tr>
<tr>
<td>Coin lesion</td>
<td>3</td>
<td>13</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Mediastinal widening</td>
<td>2</td>
<td>8</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>New fracture</td>
<td>3</td>
<td>4</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Deformations</td>
<td>6</td>
<td>22</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Cardiomegaly</td>
<td>32</td>
<td>102</td>
<td>29.4</td>
<td>98.5</td>
</tr>
<tr>
<td>Non-specific changes†</td>
<td>20</td>
<td>48</td>
<td>39.5</td>
<td>96.4</td>
</tr>
<tr>
<td>Any chest radiograph abnormality</td>
<td>346</td>
<td>291</td>
<td>60.1</td>
<td>89.0</td>
</tr>
</tbody>
</table>

*Pleural thickening, interstitial markings, lung/pleural calcifications.
†Prominent pulmonary vasculature, atelectasis, high hiatus.
ND, not determined.

RESULTS

Of 507 patients 57.2% were male and 42.8% were female, their ages ranged between 16 and 98 years (mean (SD) 48 (20.5) years). The most frequent complaints were chest pain (23.9%), dyspnoea (18.7%), cough (19%), and fever (13.1%). Common physical findings were normal chest examination (36.8%), musculoskeletal tenderness (13.2%), inspiratory crackles and signs of bronchospasm (12%) each). The diagnoses at discharge were mostly non-specific (such as “non-specific chest pain”), or diagnoses not related to radiography findings, as shown in table 1.

There were 557 findings described by emergency department physicians compared with 647 found by senior radiologists for all chest radiographs evaluated (each radiograph occasionally having more than one finding, and each finding was assessed separately). The emergency department physicians consulted a radiologist in 147/509 of the radiographs examined (28.9%). The major findings on radiographic interpretation and estimates of sensitivity and specificity are shown in table 2, and the overall sensitivity was relatively low. The highest level of sensitivity was shown for consolidation (64%) and congestion (50%), whereas very low levels of sensitivity were found for chronic changes (20%). Specificities were high, ranging from 94.9% for consolidation to 98.7% for pleural effusion. It is important to emphasise that the emergency department physicians often missed potentially important findings such as coin lesions or mediastinal widening, although the numbers were too small to allow precise statistical assessment.

We assessed the treatment actually received and compared it with the treatment “indicated” according to the radiologist’s description. Twenty two of 57 patients (38.6%) with misinterpreted radiological signs of consolidation were discharged without a new antibiotic prescription. Of these, 10 were already receiving antibiotics or were known to have pneumonia on admission to the emergency department, so that the actual number of patients not receiving treatment for suspected pneumonia was 12 (26.3%). Three of them had been specifically instructed to return for further evaluation the next day, thus reducing the potential number of improperly treated patients to nine (15.8%). Twenty six of 34 patients (76.5 %) with misinterpreted radiological signs of congestion were discharged without specific treatment or change in treatment for congestive heart failure (CHF) exacerbation. Twenty of these patients were known to have CHF and were receiving treatment, therefore reducing the actual number of patients not receiving appropriate treatment for CHF exacerbation to six (17.6 %), of which three were sent for
further evaluation the next day. The sensitivity for pleural effusion was very low (25.8%), yet only 6/31 (19.3%) effusions were of clinical significance, of which two were referred for further evaluation.

When categorised by levels of clinical significance (mild, moderate, and high as described in the methods section), the highest sensitivity of the emergency department physicians’ interpretation was in the group with highly clinical significant radiographic findings (60%), with lower rates of sensitivity for the moderate significance group (31.7%), and low significance group (27.5%). There were no statistically significant differences between the observers at different levels of training (p=0.87).

Interobserver reliability, as assessed by the κ coefficient of agreement between all emergency department physicians and senior radiologists, was moderate to low: 0.40 (CI 0.35 to 0.46). There was no significant difference found for interobserver reliability among levels of the emergency department staff compared with the senior radiologist, as shown in Table 3 (p=0.33).

### DISCUSSION

Numerous studies have examined the interobserver reliability of radiographic interpretation in the emergency department. Each study was designed in a different manner thus making standardisation difficult. The trend over recent decades has been a decrease in the overall interpretation discrepancy rates to as low as 0.3%. Our study shows higher levels of misinterpretations as it was designed to maximise the potential discordance between emergency department physicians and radiologists by including all radiographic findings. Subtle signs, such as questionable consolidations, trace amounts of pleural effusion, very mild congestion, borderline cardiomegaly, etc, were regarded as positive findings therefore contributing to more errors of omission. Furthermore, basing the study on the actual medical records with no standard form indicates that many of these signs were not recorded in the discharge letter, either because of non-significance to the final discharge diagnosis, or because the findings were trivial to the specific patient (such as cardiomegaly in a known CHF patient). Using such a checklist or standard form might have improved interpretation skills, maybe as part of their residency, or by quality control measures.

### Table 3

<table>
<thead>
<tr>
<th>Emergency department physician training level</th>
<th>No (%) of chest radiographs read</th>
<th>κ</th>
<th>95% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attending physician</td>
<td>113 (22.2)</td>
<td>0.31</td>
<td>0.20 to 0.42</td>
</tr>
<tr>
<td>Senior medical residents</td>
<td>103 (20.2)</td>
<td>0.38</td>
<td>0.28 to 0.48</td>
</tr>
<tr>
<td>Intermediate medical residents</td>
<td>136 (26.7)</td>
<td>0.35</td>
<td>0.26 to 0.44</td>
</tr>
<tr>
<td>Junior medical residents</td>
<td>90 (17.7)</td>
<td>0.47</td>
<td>0.36 to 0.59</td>
</tr>
<tr>
<td>Surgical residents</td>
<td>67 (13.2)</td>
<td>0.40</td>
<td>0.14 to 0.65</td>
</tr>
</tbody>
</table>

Community hospitals, the chest radiographs are read by various general radiologists, precluding comparison with other studies. We believe that if one trained chest radiologist had been reading the radiographs, the level of interobserver variability might have been higher.

We chose only chest radiographs of discharged patients and not all those done in the emergency department during the study period, whereas most studies examined all radiographs performed in the emergency department. Chest radiographs of admitted patients are more likely to have obvious positive findings, such as dense alveolar opacities, which are readily identified as pneumonia by even the most junior medical staff. The study was performed in the actual working environment of the emergency department and not in a "sterile" environment of the emergency department and not in a “sterile” environment.

Our study is limited by the fact that our institution, as is common in many relatively small community hospitals, the chest radiographs are read by various general radiologists, precluding comparison with other studies. We believe that if one trained chest radiologist had been reading the radiographs, the level of interobserver variability might have been higher.

We chose only chest radiographs of discharged patients and not all those done in the emergency department during the study period, whereas most studies examined all radiographs performed in the emergency department. Chest radiographs of admitted patients are more likely to have obvious positive findings, such as dense alveolar opacities, which are readily identified as pneumonia by even the most junior medical staff. The study was performed in the actual working environment of the emergency department and not in a “sterile” environment.

Cardiomegaly, etc, were regarded as positive findings therefore contributing to more errors of omission. Furthermore, basing the study on the actual medical records with no standard form indicates that many of these signs were not recorded in the discharge letter, either because of non-significance to the final discharge diagnosis, or because the findings were trivial to the specific patient (such as cardiomegaly in a known CHF patient). Using such a checklist or standard form might have improved interpretation skills, maybe as part of their residency, or by quality control measures.

### References


---

**Authors' affiliations**

M E Gatt, G Spectre, O Paltiel, et al

M E Gatt, G Spectre, Department of Medicine, Hadassah University Hospital, Mount Scopus, Jerusalem, Israel

O Paltiel, Hematology Unit and the Department of Social Medicine, Hebrew University-Hadassah Medical School

N Miller, Radiology Department

R Stalniskowicz, Emergency Department

**REFERENCES**

A case study of pneumonia induced by rifampicin in pulmonary tuberculosis should remind doctors to be alert to this very rare—but potentially fatal—reaction.

The case was of an 81 year old man being treated in hospital for pulmonary tuberculosis of the left lung with rifampicin (0.3 g/ day), isoniazid (0.5 g/ day), and ethambutol (0.5 g/ day). Seven days after starting treatment he developed fever and dyspnoea, and x-ray and computed tomography examinations showed shadows on the opposite, right, lung.

The man's white blood cell count had increased from 6070/µl to 13 540/µl, comprising 81% neutrophils, 6% lymphocytes, 11% monocytes, and 3% eosinophils. Bronchoalveolar lavage fluid contained 83% lymphocytes, 14% neutrophils, and 4% macrophages; the ratio of CD4/CD8 lymphocytes was 10.5. A drug stimulation lymphocyte test (DLST) showed a stimulation index of 370% with rifampicin, 170% with isoniazid, and 130% for ethambutol.

Tuberculosis treatment was withdrawn. Steroids were given to correct progressive respiratory failure, and a gradual recovery followed. Streptomycin treatment (0.5 g/ day) was started on day 26. Isoniazid and ethambutol treatment resumed three months after they were stopped, and the combined treatment continued for six months with no adverse reaction.

The only other published case has suggested that it is rifampicin toxicity that induces pneumonia, but the positive DLST result here suggests stimulation of the immune system may be another way.

Rifampicin is a valuable drug for treating tuberculosis. Its well known complications include hepatitis, fever, and blood problems; pneumonia is a rare, but dangerous, reaction.

ECHO

Using rifampicin against TB risks a rare reaction
