Hereditary haemorrhagic telangiectasia (HHT, Osler-Weber-Rendu syndrome): a view from the 21st century

M E Begbie, G M F Wallace, C L Shovlin

Hereditary haemorrhagic telangiectasia (HHT) affects one in 5–8000, and no longer can be viewed as solely causing anaemia (due to nasal and gastrointestinal bleeding) and characteristic mucocutaneous telangiectasia. Arteriovenous malformations commonly occur, and in the pulmonary and cerebral circulations demand knowledge of risks and benefits of asymptomatic screening and treatment. HHT is inherited as an autosomal dominant trait and there is no age cut off when apparently unaffected offspring of an individual with HHT can be told they are unaffected. This review focuses on the evolving evidence base for HHT management, issues regarding pregnancy and prothrombotic treatments, and discusses the molecular and cellular changes that underlie this disease.

Hereditary haemorrhagic telangiectasia (HHT, Osler-Weber-Rendu syndrome) has been subject to under-reporting for many years. Recent careful epidemiological studies in France, Denmark, and Japan, however, reveal an incidence of one in 5–8000. Individuals with HHT present to a wide range of specialties spanning medical, surgical, and general practice disciplines. Advances in medical practice mean that an expectant approach to management is no longer appropriate, and patients are increasingly aware of this through patient self-help websites (see end of article). However, many specialists lack appreciation of the full range of consequences of diagnosis for patients and their families, and still view HHT as a “rare” disease, compounded by the generally poor recognition of cases.

In this article we highlight the modern view of HHT. We also cover the scientific background of a disease which features prominently in postgraduate medical examinations due to the ready availability of outpatients with classical stigmata (a recent survey indicated that HHT occurred in approximately one in 20 short case examinations for MRCP).1

OVERVIEW OF HHT: THE DIFFERENCES BETWEEN 19TH CENTURY AND MODERN VIEWS OF HHT

Historical view

HHT was first recognised in the 19th century as a familial disorder causing nose bleeds, gastrointestinal bleeding, and abnormal vascular structures. Later descriptions by Osler, Weber, and Hanes brought the disorder to the attention of the general medical community. These resulted in the eponym Osler-Weber-Rendu syndrome. Though Hanes’ suggestion of hereditary haemorrhagic telangiectasia is often preferred. The combination of nose bleeds, gastrointestinal bleeding, and iron deficiency anaemia associated with characteristic telangiectasia on the lips, oral mucosa, and fingertips (fig 1) has become firmly established as a medical entity. Yet this constitutes only “19th century HHT” (fig 2), and may not be evident in HHT patients who still have life threatening manifestations of disease.

Modern view of HHT

By the 1940s, additional abnormal vessels were being described in HHT, particularly arteriovenous malformations (AVMs) of the pulmonary, hepatic, and cerebral circulations. Initially it was suspected that such involvement was rare, but this was based on the frequency of symptomatic presentation to an astute practitioner. With the onset of asymptomatic screening programmes for clinical or research purposes, a much higher frequency of involvement was seen. We now estimate that at least 30% of HHT patients have pulmonary involvement, 30% hepatic involvement, and 10%–20% cerebral involvement. Faced with such high figures, there is a reasoned debate regarding the extent to which these studies have overestimated risk based on screening of preselected “severe” HHT populations (that is, relatives of patients with a pulmonary AVM) or screening tests with high false positive rates. However, the figures in fig 2 provide a fair reflection of data currently available.

It is recognised that the manifestations of HHT are not present generally at birth, but develop with increasing age such that nose bleeds are usually the earliest sign of disease, often occurring in childhood, pulmonary AVMs becoming apparent from puberty, with mucocutaneous and gastrointestinal telangiectasia developing progressively with age (fig 3). Data suggest that by the age of 16 years, 71% of individuals will have developed some sign of HHT, rising to over 90% by

Abbreviations: AVM, arteriovenous malformation; HHT, hereditary haemorrhagic telangiectasia; MRI, magnetic resonance imaging; TGF-β, transforming growth factor-beta
the age of 40 years. However these data mean that during their childbearing years, an apparently unaffected child of an HHT patient still has a 5%–20% chance of actually carrying the HHT disease gene.

DIAGNOSIS OF HHT

Not every individual with recurrent nose bleeds, even familial nose bleeds, will have HHT yet as indicated below, it is important that the diagnosis of HHT is considered in such cases. To permit a high level of clinical suspicion without leading to overdiagnosis, recent international consensus diagnostic criteria were developed based on the four criteria of spontaneous recurrent nosebleeds, mucocutaneous telangiectasia, visceral involvement, and an affected first degree relative. These define “definite HHT” where three criteria are present, “possible HHT” or “suspected” if two criteria are present, or “unlikely” if fewer than two criteria are present.

Criteria

1. Epistaxis: spontaneous, recurrent nose bleeds.
2. Telangiectases multiple, at characteristic sites:
 - Lips
 - Oral cavity
 - Fingers
 - Nose
3. Visceral lesions such as:
 - Gastrointestinal telangiectasia (with or without bleeding).
 - Pulmonary AVM.
 - Hepatic AVM.
 - Cerebral AVM.
 - Spinal AVM.
4. Family history a first degree relative with HHT according to these criteria.

All offspring of an individual with HHT are at risk of having the disease since HHT may not manifest until late in life. If there is any concern regarding the presence of physical signs, an experienced physician should be consulted. Coagulation disorders should be excluded. The presence of visceral abnormalities in children should prompt a particularly careful check of other family members. These criteria are likely to be further refined as molecular diagnostic tests become available in the next few years.

A crucial issue for families (and medical practitioners) is that no child of a patient with HHT can be informed they do not have HHT, unless they have had a molecular diagnosis.

CLINICAL FEATURES OF HHT

Nose bleeds

Spontaneous recurrent nose bleeds from telangiectasia of the nasal mucosa are the most common clinical manifestation of HHT. While some patients will have only occasional nose bleeds, others will experience significant bleeds on a daily basis. Many patients require no treatment other than iron supplementation by diet and oral supplements, whereas others may require transfusions and emergency nasal packing. A number of topical, systemic, and surgical treatments are available (table 1), and in expert hands there are uncontrolled data that each appears to reduce bleeding, though responses are variable. Cauterisation is best avoided due to damage of nasal mucosa prompting vascular regrowth. The adage “to do as little as possible for as long as possible” is taking hold in HHT circles, and treatments are generally directed to patients either experiencing massive haemorrhages, or experiencing daily nose bleeds. Systemic treatments have also been introduced, and are discussed with gastrointestinal haemorrhage below.

Box 1: The Curaçao criteria as presented in Shovlin et al.

The HHT diagnosis is:

- “Definite” if three criteria are present.
- “Possible” or “suspected” if two criteria are present.
- “Unlikely” if fewer than two criteria are present.

<table>
<thead>
<tr>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Epistaxis: spontaneous, recurrent nose bleeds.</td>
</tr>
<tr>
<td>2. Telangiectases multiple, at characteristic sites:</td>
</tr>
<tr>
<td>- Lips</td>
</tr>
<tr>
<td>- Oral cavity</td>
</tr>
<tr>
<td>- Fingers</td>
</tr>
<tr>
<td>- Nose</td>
</tr>
<tr>
<td>3. Visceral lesions such as:</td>
</tr>
<tr>
<td>- Gastrointestinal telangiectasia (with or without bleeding).</td>
</tr>
<tr>
<td>- Pulmonary AVM.</td>
</tr>
<tr>
<td>- Hepatic AVM.</td>
</tr>
<tr>
<td>- Cerebral AVM.</td>
</tr>
<tr>
<td>- Spinal AVM.</td>
</tr>
<tr>
<td>4. Family history a first degree relative with HHT according to these criteria.</td>
</tr>
</tbody>
</table>

All offspring of an individual with HHT are at risk of having the disease since HHT may not manifest until late in life. If there is any concern regarding the presence of physical signs, an experienced physician should be consulted. Coagulation disorders should be excluded. The presence of visceral abnormalities in children should prompt a particularly careful check of other family members. These criteria are likely to be further refined as molecular diagnostic tests become available in the next few years.

Gastrointestinal haemorrhage

This probably contributes less frequently to iron deficiency than under-recognised nose bleeds: in many patients, improvement in nasal haemorrhage is able to significantly reduce iron and transfusion requirements. However recurrent gastrointestinal tract haemorrhage occurs in a substantial minority (up to a third) of HHT affected individuals, particularly in later years. Antihaemorrhagic medical treatments have been sought. The benefits of laser or other ablation therapies may be obtained. This probably contributes less frequently to iron deficiency than under-recognised nose bleeds: in many patients, improvement in nasal haemorrhage is able to significantly reduce iron and transfusion requirements. However recurrent gastrointestinal tract haemorrhage occurs in a substantial minority (up to a third) of HHT affected individuals, particularly in later years. Antihaemorrhagic medical treatments have been sought. The benefits of laser or other ablation therapies may be obtained.

Pulmonary AVMs

Pulmonary AVMs are thin walled abnormal vessels that replace normal capillaries between the pulmonary arterial and venous circulations, often resulting in bulbous sac-like structures (fig 4A). They provide a direct capillary-free communication between the pulmonary and systemic circulations with three main clinical consequences:

- Pulmonary arterial blood passing through these right-to-left shunts cannot be oxygenated, leading to hypoxaemia.
- The absence of a filtering capillary bed allows particulate matter to reach the systemic circulation where it impacts in other capillary beds, causing clinical sequelae particularly in the cerebral circulation.
- The fragile vessels may haemorrhage into a bronchus or the pleural cavity.

Patients with clinically silent pulmonary AVMs are still at risk of haemorrhage, and more commonly neurological sequelae due to paradoxical embolism. Catastrophic embolic cerebral events (cerebral abscess and embolic stroke), and transient ischaemic attacks occur in patients regardless of the degree of respiratory symptoms and still carry significant morbidity and mortality. Indeed, in published series of approximately 400 patients the majority of pulmonary AVM patients had no respiratory symptoms, and, only a third of affected individuals exhibited physical signs indicating a massive right-to-left shunt (cyanosis, clubbing, and polycythaemia; see table 2).

<table>
<thead>
<tr>
<th>Feature</th>
<th>Mean (%)</th>
<th>Range (%)</th>
<th>No of cases*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>49</td>
<td>25-58</td>
<td>260</td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>49</td>
<td>27-71</td>
<td>483</td>
</tr>
<tr>
<td>Haemoptysis</td>
<td>14</td>
<td>6-18</td>
<td>198</td>
</tr>
<tr>
<td>Cyanosis</td>
<td>30</td>
<td>9-73</td>
<td>275</td>
</tr>
<tr>
<td>Clubbing</td>
<td>32</td>
<td>6-68</td>
<td>267</td>
</tr>
<tr>
<td>Bruit</td>
<td>49</td>
<td>25-58</td>
<td>263</td>
</tr>
<tr>
<td>Embolic phenomena</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebral abscess</td>
<td>9</td>
<td>0-25</td>
<td>368</td>
</tr>
<tr>
<td>CVA or TIA</td>
<td>27</td>
<td>11-55</td>
<td>401</td>
</tr>
</tbody>
</table>

*Number of published cases in which frequency of feature assessed. CVA, cerebrovascular accident; TIA, transient ischaemic attack.

Table 1 Treatment options for epistaxis

<table>
<thead>
<tr>
<th>Modality</th>
<th>Data from RCTs</th>
<th>Data from case reports/uncontrolled series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local ablation</td>
<td>Laser: argon, Nd:YAG None</td>
<td>Short term success in expert hands[25][26]</td>
</tr>
<tr>
<td></td>
<td>Cauterisation Not recommended due to local tissue damage May be beneficial[27]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Septal dermato-plasty None</td>
<td>May be beneficial Beta[28]</td>
</tr>
<tr>
<td></td>
<td>Septal closure None</td>
<td>Beneficial if tolerated[29]</td>
</tr>
<tr>
<td></td>
<td>Arterial ligation None</td>
<td>Case reports only, long term effects unknown</td>
</tr>
<tr>
<td></td>
<td>Embolisation None</td>
<td>Anecdotal only: short term benefits (7±1 year)</td>
</tr>
<tr>
<td>Systemic therapy</td>
<td>Oestrogen-progesterone Beneficial in heavily transfusion-dependent patients</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tranexamic acid and antifibrinolytics None</td>
<td>Short term benefit and risks unknown (see debate)</td>
</tr>
<tr>
<td></td>
<td>Topical therapy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nasal sprays and creams None</td>
<td></td>
</tr>
</tbody>
</table>

RCTs, randomised controlled trials.
Significant clinical concerns remain however. First, many patients with pulmonary AVMs remain under regular follow up in respiratory units without consideration of intervention. Second, published and anecdotal data suggests higher rates of complications in inexperienced hands. These include periprocedural events and long term development of systemic arterial feeders to the sac resulting in catastrophic haemorrhage, but this is not widely recognised. Finally, modern detection methods reveal more disease than is treatable with today’s technologies and much of current management lies in the long term prevention of cerebral embolic events in patients with residual disease following maximal embolotherapy.

Cerebral AVMs
HHT patients may have cerebral involvement with telangiectases, cerebral AVMs, aneurysms, or cavernous angiomas. Most complications arise from cerebral AVMs that are thought to affect more than 10% of HHT patients. They can lead to headache, seizures, ischaemia of the surrounding tissue due to a steal effect, or haemorrhage. Haemorrhage usually has devastating effects (significant long term morbidity after cerebral AVM rupture in the non-HHT population is quoted as 53%–81%), and patients with symptoms suggestive of cerebral AVMs deserve further assessment in the non-HHT population, including non-invasive imaging and ultimately assessment by experienced neurointerventional centres. Cerebral magnetic resonance imaging (MRI) is currently the most sensitive non-invasive test, though will fail to detect a significant proportion of AVMs, and generally should not be performed in patients with pulmonary AVMs embolised with non-MRI compatible coils (the majority until the late 1990s). The question of whether asymptomatic HHT patients should be screened for cerebral AVM remains hotly debated and is discussed below.

Hepatic involvement
Silent hepatic involvement occurs in up to 30% of patients, though symptomatic involvement is much less frequent, with fewer than 100 patients reported in worldwide series. When patients do present it is usually with high output heart failure, portal hypertension, or biliary disease, reflecting different patterns of vascular involvement. Hyperdynamic circulations, and less commonly high output cardiac failure and steal syndrome causing angina result from large AVMs between the hepatic artery and vein, causing a substantial left to right shunt. Portal hypertension and hepatic encephalopathy particularly after gastrointestinal tract bleeding may result from shunts between the hepatic hepatic artery and portal vein, and more commonly appear to result from increased sinusoidal blood flow (that may in turn lead to increased deposition of fibrous tissue and pseudocirrhosis of the liver). Hepatic AVMs, suspected by hepatomegaly, a liver bruist, or abnormal liver function tests can be diagnosed by angiography, computed tomography, MRI, or Doppler sonography.

The treatment of hepatic AVMs has changed in the last two to three years. Embolisation of feeding vessels used to be performed but after several cases of fatal hepatic necrosis, HHT physicians in the United States have placed a moratorium on this treatment unless supported by a liver transplantation programme. In the rare cases when acute hepatic failure develops, liver transplantation may be life saving.

HOW TO MANAGE THE HHT PATIENT
The majority of patients with HHT will still effectively have “19th century” HHT, experiencing only nose bleeds, mucocutaneous telangiectasia, and a tendency to iron deficiency anaemia. For HHT patients who do not present spontaneously to medical practitioners before the age of 60 years, there is no excess mortality. However, there is significant morbidity and mortality in younger patients, predominantly attributed to the consequences of visceral involvement, particularly pulmonary and cerebral involvement leading to early onset strokes and brain abscess.

General principles of HHT management are illustrated in box 2 overleaf.

Special circumstances and debated topics in HHT
The pregnant HHT patient
Pregnancy poses a risk to a small proportion of women with HHT, and individual patients may need to be cautioned against pregnancy on a case-by-case basis. However, for the majority of patients, pregnancy is uneventful. The patient should be aware that any offspring will have a 50% risk of inheriting HHT, that there may be complications due to enlargement of pulmonary AVMs, and that as spinal AVMs affect perhaps as many as 1%–2% of HHT patients, many anaesthetists will not perform epidural analgesia for HHT mothers unless MRI scans have excluded this possibility. Otherwise, anecdotal data suggests nose bleeds may get worse, and skin telangiectasia become more prominent, with no firm data regarding effects on hepatic and cerebral AVMs.

Medical practitioners should be aware that any pulmonary AVMs will enlarge during pregnancy, and fatal haemorrhage from maternal pulmonary AVMs has been described. Women with HHT should be screened for pulmonary AVMs and treated maximally before pregnancy, though treatment may
endothelial cells. Most gene products resulting from HHT -to neither of these loci is ongoing. The search for a third disease locus in families shown to map the disease subtypes designated HHT1 and HHT2, respectively.

MOLECULAR AND CELLULAR BASIS OF HHT

HHT is inherited as an autosomal dominant trait with varying pulmonary hypertension, an extremely rare complication of HHT such as severe chest pain,gies also considered. This is particularly true when a possible HHT-associated complications, and possible non-HHT aetiologies are based on an appreciation of the likely frequency of particular clinical presentations. It is crucial that assessments there is the genuine concern that HHT patients may not?

How safe is it to use hormones and antifibrinolytics to modify the haemorrhagic phenotype?

In a double blind randomised controlled trial, 50 µg ethinylestradiol and 1 mg norethisterone resulted in a significant reduction in transfusion requirements in 10 patients with a mean transfusion requirement of 19.4 packed cells units per year. These data have been extrapolated in clinical practice to patients with lesser degrees of haemorrhage not necessarily associated with regular transfusion requirements. The use of higher dose conjugated oestrogens in the “hormone replacement” range of over 625 µg ethinylestradiol equivalent, or prothrombotic agents such as tranexamic acid and aminocaproic acid are also widespread in management of HHT-related bleeding, though not supported by data from randomised controlled trials. However, it should be remembered that HHT patients are at risk of thromboembolic disease, and in our experience there is concern that these practices may increase the risk of thrombotic events in HHT patients. How safe is it to ascribe unusual presentations to rare complications of HHT?

As potential complications of HHT become better appreciated, there is the genuine concern that HHT patients may not undergo the full range of diagnostic investigations for particular clinical presentations. It is crucial that assessments are based on an appreciation of the likely frequency of HHT complications, and possibilities also considered. This is particularly true when a possible extremely rare complication of HHT such as severe chest pain, pulmonary hypertension, or hepatic failure is under consideration. Even for lower gastrointestinal bleeding, at least one colonoscopy to exclude a malignant aetiology is usually warranted.

Molecular and Cellular Basis of HHT

HHT is inherited as an autosomal dominant trait with varying penetrance and expressivity. Mutations in two genes, endoglin and ALK-1, have been shown to be responsible for HHT, with the disease subtypes designated HHT1 and HHT2, respectively. The search for a third disease locus in families shown to map to neither of these loci is ongoing. Confirmation that endoglin mutations are causative is available from experiments in transgenic mice. Some mice carrying one normal and one mutated copy of the endoglin gene (that is, endoglin” heterozygotes) display features of HHT.

Endoglin and ALK-1 encode proteins expressed on vascular endothelial cells. Most gene products resulting from HHT-causing mutations in these genes are unstable at the level of mRNA or protein, and it has been shown that endothelial cells derived from HHT1 or HHT2 patients express approximately one half of the normal endoglin or ALK-1 levels, respectively. Therefore it is believed that in most if not all cases, HHT results from endoglin or ALK-1 haploinsufficiency—that is, lack of sufficient protein for normal function. As endothelial cells derived directly from arteriovenous malformations also express half the normal levels of endoglin, these malformations do not appear to be due to an additional local loss of endoglin expression due to a “second hit.”

How do mutations in endoglin and ALK-1 result in HHT?

These genes encode proteins that are involved with signalling by the transforming growth factor-beta (TGF-β) superfamily. This group of peptide growth factors includes TGF-βs, activins, and the bone morphogenetic proteins, which affect cellular growth and differentiation through signal transduction cascades from transmembrane receptor complexes (for review, see Heldin et al). Generally, type II TGF-β receptors bind the ligand directly, recruit and activate type I receptors that activate downstream cytoplasmic signalling molecules including SMADs. SMADs then bind into complexes and translocate to the nucleus, where they modulate the expression of target genes through direct binding to DNA.

As ALK-1 is a TGF-β superfamily type I receptor, and endoglin associates with different signalling receptors and can modify TGF-β1 signalling, it is expected that the abnormal vessels in HHT develop because of aberrant TGF-β signalling at some stage during vascular development and homeostasis. Endoglin and ALK-1 work together to play specific parts in governing cellular responses such as proliferation and adhesion induced by members of the TGF-β superfamily. As other HHT disease genes are identified, these will also likely play a part in this signalling pathway possibly either as ligands, receptors, or downstream transducers of TGF-β family member signals.
Q5. The science of HHT:
(A) HHT develops in the presence of only a single abnormal mutated gene
(B) The genes mutated in HHT are implicated in signalling by fibroblast growth factor
(C) The genes mutated in HHT allow prediction of the pattern of HHT in the individual
(D) No environmental modifiers of HHT have been found to date
(E) The disease genes in HHT are likely to be the only genetic factors influencing the HHT phenotype

REFERENCES
5. Sutton HG. Epistaxis as an indication of impaired nutrition, and of degeneration of the vascular system. Medical Mirror 1864; 1:769–81
9. Weber F. Multiple hereditary developmental angiomata (telangiectases) of the skin and mucous membranes associated with recurring haemorrhages. Lancet 1907; ii:160–2

ACKNOWLEDGEMENTS
We thank Dr James Jackson FRCP, MRCP for performing the pulmonary angiogram illustrated in fig 4A, and Mr William Grant FRCS, for helpful comments on the manuscript.

MULTIPLE CHOICE QUESTIONS (TRUE (T)/FALSE (F);
ANSWERS AT END OF REFERENCES)
Q1. Hereditary haemorrhagic telangiectasia (HHT), Osler-Weber-Rendu syndrome:
(A) Affects approximately one in 100 000 individuals
(B) Can be safely ignored in the patient who just has nose bleeds
(C) Is only life threatening with a patient with nose bleeds and facial telangiectasia
(D) Does not influence mortality in epidemiological studies of the over 60s
(E) Frequently causes early onset strokes

Q2. A child of an individual with HHT:
(A) Can be told they do not have HHT if they show no manifestation of the disease by the age of 30
(B) Has a one in two chance of developing HHT
(C) If develops HHT, is likely to have the same type of HHT as their parent
(D) Has definite HHT if they develop nose bleeds
(E) Does not require medical review if they do not have nose bleeds

Q3. An individual with HHT complains of feeling generally unwell. Possible diagnoses to consider are:
(A) Anaemia
(B) Hypoxaemia
(C) Recent onset stroke
(D) Liver disease
(E) Transient ischaemic attacks

Q4. Patients who are fit and well with HHT should be screened for:
(A) Gastrointestinal telangiectasia
(B) Pulmonary AVMs
(C) Cerebral AVMs
(D) Hepatic AVMs
(E) Spinal AVMs

However, understanding whether patients have endoglin or ALK-1 mutations does not allow a strong prediction of the likely course of HHT since all features of HHT can be seen in both HHT1 and HHT2. The different pattern of disease in different members of the same families in man (and in the mouse models) suggest that other genetic and environmental influences modify the HHT phenotype. Understanding these modifications will be critical to furthering our understanding of the development of the vascular lesions in HHT, and may help our understanding of the pathways by which normal vascular integrity is maintained.

Box 3: Self help websites
- UK Telangiectasia Self Help Group: http://www.telangiectasia.co.uk and email info@telangiectasia.co.uk
- HHT Foundation International: http://www.hht.org. This highly informative website offers advice that is sometimes more applicable for North American than European health care, particularly with regard to cerebral AVM screening

AUTHORS’ affiliations
M E Begbie, C L Shovlin, Respiratory Medicine, National Heart and Lung Institute, Imperial College Faculty of Medicine, Hammersmith Hospital, London
G M F Wallace, Respiratory Medicine, Royal Laboratories, University of Edinburgh
hepatic involvement.

ANSWERS

Q1. (A) F (one in 8000), (B) F (needs pulmonary AVM screening). (C) F (D) T, (E) T. Q2. (A) F, (B) T, (C) F, (D) F (only suspected HHT), (E) F. Q3. (A) T, (B) T, (C) T, (D) T; (E) T. Q4. (A) F, (B) E, (C) do not know; subject remains topic for debate, (D) F, (E) F, though there may be special circumstances, such as epidural analgesia when this might be considered. Q5. (A) T, (B) F, (C) F, (D) F (pregnancy precipitates pulmonary AVM development), (E) F.