An interesting case of small bowel obstruction

Q1: What is the diagnosis?
This is a case of mechanical small bowel obstruction secondary to an enterolith/bezoar the likely source of which is jejunal diverticulosis.

Q2: What is the differential diagnosis?
This includes the various intraluminal causes of small bowel obstruction such as:
• True foreign bodies: metallic, plastic.
• Food bolus.
• Gallstones.
• Concretions.

Q3: What are the other possible complications of the primary disease of the small bowel?
The possible complications include:
• Diverticulitis
• Haemorrhage
• Obstruction: 1. True obstruction due to enterolith, diverticulitis, adhesions associated with inflammation, volvulus about the adhesions, and intussusception. 2. Pseudo-obstruction or motility disorder.
• Malabsorption due to stasis and bacterial overgrowth.
• Fistulac.
• Asymptomatic pneumoperitoneum.
• Malignant tumours.

Q4: What are the possible treatment options?
The simplest surgical option for small or crushable enteroliths is to milk them distally into the cecum and allow them to pass naturally. If this is not possible, the treatment of this condition is an enterotomy to remove the enterolith with or without resection of the segment of small bowel involved with diverticulosis. Resection may be advocated if the diverticulosis is localized, and is recommended for the other forms of obstruction, haemorrhage, and patients with malabsorption who do not respond to conservative management.

Discussion
The findings at laparotomy were as follows: dilated loops of small bowel seen to mid-ileum. Obstruction at this point was due to an enterolith with collapsed distal bowel (see fig 3 in questions (p 626) and fig 1 below). Two large jejunal diverticulae 12 and 24 inches from the duodenoejejunal flexure seen which were palpably empty. The gallbladder was normal with no palpable gallstones. The enterolith was milked proximally and re-moved via a longitudinal antimere-colic enterotomy which was closed transversely, without resection of the diverticular segment. At laparotomy it is essential to rule out the other causes of enteroliths such as gallstones (as evidenced by a choledochoduodenal/jejunal fistula) and to carefully palpate the entire length of the small bowel including the diverticula for further enteroliths.

Bezoars are masses of solidified organic or non-biological material commonly found in the stomach or small bowel. Four types have been described based on their composition: phytobezoars (containing fibre and cellulose), trichobezoar, lactobezoar, and miscellaneous. The last group includes medications (hydroscopic bulk laxatives, cholestyramine, non-absorbable antacids, vitamin C tablets, and Isocal tube feeds), parasites (Ascariis lumbricoides or roundworm), and synthetic fibre.1 A case of carpet fibre bezoar forming at the site of a stapled intestinal anastomosis in a child with pica has been described.2 In general, the formation of bezoars in the small intestine appears to be at sites such as blind loops, tumours, and diverticulae (duodenal, jejunal, and Meckel’s).3,4

The incidence of acquired jejunal diverticulosis varies from 0.2% to 1.3% on necropsy studies to 2.3% on enteroclysis.5 It is associated in 33% to 75% of cases with diverticula elsewhere in the gastrointestinal tract. Enteroliths that form in the proximal small bowel contain bile salts and are frequently radiolucent whereas as many as a third of those that form in the ileum are radio-opaque because of precipitation of mineral salts in an alkaline environment.6

The diagnosis is therefore rarely made on the preoperative plain abdominal radiograph. Computed tomography is the modality of choice for investigating patients with higher grades of small bowel obstruction where early surgical intervention is contemplated.7 There is an increasing tendency to utilise computed tomography to help define the cause, severity, and complications of small bowel obstruction due to the unreliability of clinical signs to predict accurately those patients requiring early intervention.8

This is an unusual cause of small bowel obstruction that needs prompt diagnosis and operative treatment.

Final diagnosis
Enterolith causing small bowel obstruction.

References

Iatrogenic groin pain

Q1: What is the likely clinical diagnosis?
The triad of groin pain, hip flexion, and femoral neuropathy indicates iliopect sheath haemorrhage. This condition occurs in patients with inherited coagulation disorders, particularly haemophilia A, and in patients on oral anticoagulants.9,10 Spontaneous haemorrhage occurs deep to the iliacus fascia from the iliacus or psoas muscles, blood tracking from the retroperitoneal space into the pelvic extraperitoneal space. Occasionally massive bleeding can lead to signs of volume deficit. The iliacus fascia invests the psoas major and iliacus muscles and continues inferiorly to the posterior wall of the femoral sheath. This explains the association with femoral neuropathy, the nerve lying in the groove between the iliacus and psoas muscles. The predilection for the iliacus muscle is unclear.

Q2: What lesion is shown on the computed tomograms (see p 627)?
The computed tomograms shows a collection behind the left iliacus muscle which displaces this anteriorly and separates it from the iliac blade. The left iliopsoas muscle appears enlarged with heterogeneous attenuation internally.

Q3: How should this condition be managed?
In our patient, warfarin was temporarily stopped. He was administered vitamin K, and thereafter started on heparin. The international normalised ratio came down from 7.2 to 2.0 within 24 hours. The pain resolved. There was some residual non-disabling thigh weakness at the time of discharge.

Discussion
Haemorrhage into the iliacus and or psoas muscles is a well recognised complication of overanticoagulation, as well as of haemophilic disorders. The precise incidence and initiating mechanism of this condition is unclear. Two anatomical syndromes have been described.

Spontaneous haemorrhage may commence either in the iliacus muscle, in which case bleeding occurs deep to the iliacus fascia and a femoral neuropathy may coexist. Alternately bleeding may commence in the psoas major muscle initially or spread from the iliacus muscle to the psoas. In this case involvement of other components of the lumbarplexus, including the obturator nerve and the lateral femoral cutaneous nerve of the
thigh, is likely. A similar clinical picture may be produced by neoplastic infiltration of the lumbosacral plexus.

Pain is the presenting feature, involving the groin, and radiating to the thigh and leg. This is followed by gradually increasing paraesthesiae and limb weakness. A flexion and lateral rotation deformity of the hip may ensue. Passive hip extension is restricted and painful. Delayed development of bruising in the groin may occur. The pain may resolve in a week with slower and often incomplete recovery of neurological function. In 10–15% of cases there may be no significant improvement.

There is little definitive guidance on management, as the literature is largely anecdotal and based on case reports or small case series. Overanticoagulation needs to be recognised and corrected. Computed tomography or ultrasound guided aspiration may be helpful, especially if blood is aspirated.

The prognosis must remain guarded, as residual neurological sequelae are possible even where surgical treatment has been undertaken. With the increasing usage of these techniques as a diagnosis, doctors dealing with anticoagulated patients need to be aware of this clinical presentation.

Final diagnosis
Iliopsoas sheath haemorrhage.

Acknowledgement
We wish to thank Dr David Grant for selecting and commenting on the radiographs.

References

Terminal ileal stricture

Q1: What does the small bowel enema show (see p 627)?
The small bowel enema shows normal jejunum. The ileum is shortened in its distal portion and uniformly narrowed with a smooth outline; the ileocelecal junction is well delineated and the cæcum is normal.

Q2: What is the differential diagnosis?
The differential diagnosis of ileal stricture includes tuberculosis, Crohn’s disease, pelvic inflammation, ischaemia, radiation enteritis, carcinoid infiltration, lymphoma, and diffuse enteritis—that is, disorders where there is inflammation, infiltration, or oedema of the small bowel. History and clinical findings in this case did not contribute to the diagnosis.

Q3: How can you confirm the diagnosis?
Enteroscopy/terminal ileoscopy is the investigation of choice. In active Crohn’s disease, the terminal ileum shows patchy asymmetrical and heterogenous mucosal lesions. Ulcers which may be aphthoid, superficial, or deep are seen surrounded by normal mucosa. Tuberculoid granuloma is the most specific finding on histology apart from infiltration of lamina propria by lymphocytes and plasma cells with aggregates of lymphocytes near the base of the crypts. In the present case, the smooth and featureless mucosa, and inflamma-
tory cellular infiltrate of lamina propria suggests Crohn’s disease in remission. The patient has not been on any medication for over four years.

Discussion
Segmental areas of luminal narrowing of ileum referred to as ileal stricture is due to rigid thickening and fibrosis of its wall result-
ing in obstruction. It is a common complica-
tion of Crohn’s disease, tuberculosis, and intestine ischaemia. A flare-up of inflamma-
tory process causes temporary intestinal narrowing; when healing occurs with a scar or fibrous tissue formation the obstruction is thus complete. This may be either be circumanullar and concentric or eccentric and irregular in nature. On barium contrast examination, these strictures typically appear as segmental narrowing without normal mucosal pattern and with smooth tapered ends—referred to as the “string sign”. Stric-
tures themselves are painless and may not require treatment. But sometimes, these areas become so narrow and result in a partial or total obstruction.

What is the pathophysiology of stricture formation? The intestine can propel the luminal contents only when the lumen remains fairly wide enough. When there is damage to the intestinal crypts, the process due to inflammation, the smooth muscle cells of the intestine activate a complex chain of events, involving a host of immune system compo-
ents, for example interleukin-β. There is production and deposition of more than normal collagen at the site of injury. Scarring occurs, the layers of intestinal muscle thickened, and the muscles no longer move smoothly and easily. In short, a stricture, caused by compromis-
ing the intestine’s ability to function effi-
ciently.

An important differential diagnosis of ileal stricture in the present case is Crohn’s disease, based on the peroperative findings of mesenteric thickening and ileal stricture at entero-
clysis. A featureless outline of a diseased ileal segment, due to atrophy of the folds from long standing inflammation, is not an uncom-
mon finding in Crohn’s disease. One in seven cases was seen in 29% of cases; the biopsy is not likely to be helpful in these situations. Crohn’s disease is being increasingly reported in the small bowel. It is today included as an import-
ant differential diagnosis for ileal tuberculosis.

The strictures are caused by shrinkage of a tuberculoid ileocecal mass to form a fibrous constriction. In a country where both problems exist, distinction becomes difficult. Non-
response to antituberculosis treatment fa-
ours the diagnosis of Crohn’s disease. The patient has not been treated for tuberculosis.

In Crohn’s disease, like tuberculosis, the small intestine has an abnormal affected site (80%). In the early stages of the disease, the narrowing is due to oedema and spasm; with progression of the disease, fibrosis mani-
fests as a lumenal narrowing. These findings are also seen in tuberculosis. Few radiological signs are specific for Crohn’s disease. These include fissures, ulcers, sinuses, fistulae, and asymmetrical involvement, skin lesions, and long longitudinal ulcers. Less specific findings include luminal narrowing, stricture forma-
tion, and dilatation proximal to stenosis, thickening of the mucosal folds, cobblestoning, discrete ulcers, or mural thickening. Long segmental narrowing of the terminal ileum was the only positive finding in the present case.

Khwaja and Subbuswamy reported ischae-
mic strictures of the small intestine from northern Nigeria. The radiological features are non-specific and similar to Crohn’s disease. Even at laparotomy, it may be difficult to differentiate this from Crohn’s disease and tuberculosis. Hypotensive drugs can occasionally produce intestinal ulceration and stricture formation.

The barium infusions technique (enterocy-
sis) is an ideal investigation for study of the terminal intestine, both for footprints and for extensive mucosal disease. In the best of hands, the procedure gives an optimal radiological-gross pathological correlation and satisfactory evaluation of the extent, depth of the disease, and complications.

A histological difference between Crohn’s disease and tuberculosis is not always possible. Supportive information only helps in making a diagnosis. In the case reported, the peroperative findings of ileal stricture resem-
bled Crohn’s disease and ileal tuberculosis; terminal ileoscopy and histology was not helpful. The possible diagnosis is Crohn’s disease in “remission”.

The patient under study has been asympto-
matic for four years and is not on any medication. Intervention in ileal strictures is necessary when an individual is symptomatic. Steroids, aminosalicylic acid preparations, immunomodulators, and verapamil have been used during the inflammatory phase; the latter is used in those suspected of response to intestinal injury and prevents collagen deposition. When the affected segment is fibrosed and scarred, endoscopic balloon dilata-
tion can relieve the obstruction. Surgical options include stricturoplasty and resection of the affected segment.

Final diagnosis
Crohn’s disease in “remission”.

References

Lung nodules in a silver polisher

Q1: What do the chest radiograph and HRCT of the lung show (see p 628)?
The chest radiograph shows nodular opaci-
ties, predominantly in the upper lobe. The HRCT lung images show diffusely distributed centriflobular nodules without any evidence of fibrosis.

Q2: What is the differential diagnosis of the HRCT scan appearance and the likely diagnosis in this case?
The differential diagnosis of centriflobular nodules with a diffuse distribution on HRCT

www.postgradmedj.com
Box 1: Differential diagnosis of centrilobular nodules on HRCT lung scan

- Infectious bronchiolitis including tuberculosis.
- Pneumoconiosis (coal worker’s pneumoconiosis and siderosis).
- Diffuse panbronchiolitis.
- Vasculitis and vascular metastases.
- Sarcoïdosis.
- Respiratory bronchiolitis-interstitial lung disease.
- Hypersensitivity pneumonitis.

Discussion

Siderosis (synonyms: welder’s lung, buffer’s lung, or silver polisher’s lung) is a non-fibrogenic or a “benign” form of pneumoconiosis due to the inhalation of iron particles. Iron dust is an inorganic, inert, mineral dust with high radiodensity, which neither causes fibrogenic or a “benign” form of pneumoconiosis. Siderosis, also called welder’s lung, buffer’s lung, or silver polisher’s lung is the most common type. If fibrosis is present, it is secondary to the presence of crystalline silica. Radiologically, siderosis presents as centrilobular opacities on HRCT with a uniform distribution throughout the lung fields with no conglomeration. Centrilobular opacities on HRCT lung can be divided into two categories according to size. Larger ones are seen as sharply demarcated, rounded nodules and these correspond to the q and r types of pneumoconiosis (box 2) seen on the chest radiograph. The smaller ones, more frequent in number, are seen as relatively ill defined nodular or branching opacities, a few closely spaced dots, or areas of low attenuation on HRCT and represent radiographic type p pneumoconiosis. The nodules are present diffusely and bilaterally, but with upper lobe and posterior predominance.

The differential diagnosis of centrilobular opacities on HRCT lung includes miliary tuberculosis, metastases, sarcoidosis, sarcoïdosis, hypersensitivity pneumonitis, panbronchiolitis, and respiratory bronchiolitis-interstitial lung disease. Some radiographic features are characteristic of the underlying disorder. In miliary tuberculosis, the size of nodules is relatively uniform throughout the lungs. In haematogenous metastases, the metastatic nodules are usually smooth, well defined, and round in shape. They are usually variable in size and do not show ill defined, fine centrilobular nodular or branching opacities. A classical perilymphatic distribution of the nodules is seen in conditions like sarcoidosis, lymphangitic metastases, and amyloidosis.

Patients with siderosis require no treatment and the radiological changes of siderosis may regress after cessation of exposure. The diagnosis of siderosis should be considered in relevant occupations with characteristic radiological abnormalities and absence of respiratory symptoms.

Box 2: International Labor Office classification of radiographs of pneumoconiosis

- Round opacities are classified according to size as: p, q, or r (p, up to 1.5 mm in diameter; q, 1.5–3 mm; r, 3–10 mm).
- Irregular opacities are classified as: s, t, and u (fine, medium, or coarse respectively).
- Combination of round and irregular as: x, y, and z.

Learning points

- Siderosis, baritis, and stannosis are types of benign pneumoconiosis with radiographic dense opacities.
- Siderosis, also called welder’s lung, buffer’s lung, or silver polisher’s lung is the most common type.
- Usually asymptomatic, respiratory symptoms may be present in smokers or if there is concurrent exposure to silica or asbestos.
- Centrilobular nodules with diffuse distribution are seen on a HRCT lung scan.
- Diagnosis is made on radiological features and occupational exposure.

References

Spinal tumour with raised intracranial pressure

Q1: Based on history and clinical examination what is the differential diagnosis?

Differential diagnosis for raised intracranial pressure with cauda equina syndrome include entities with lesions at multiple sites such as:

- Malignant meningitis, particularly lymphoma with root lesions.
- Neurolipoblastoma.
- Tuberculosis.
- Metastases.

Q2: What are the investigations required?

Imaging of the craniospinal axis and cerebrospinal fluid (CSF) analysis are required for diagnosis. In our case, magnetic resonance imaging of the brain showed no expanding mass lesion, except for a small left parietal arachnoid cyst. CSF analysis was then done by lumbar puncture. The fluid was xanthochromic with an opening pressure of 30 cm H2O. CSF protein was 50 g/l, glucose 5.4 mmol/l, white blood cell count 40 × 10^6/L, and red blood cell count 160 × 10^6/L. This was suggestive of a CSF block in the spinal canal.

Magnetic resonance imaging of the spine showed a intradural, extramedullary heterogeneously enhancing mass lesion at the D11–L2 level, which was hypointense on a T1 weighted image and hypointense on a T2 weighted image (figs 1 and 2).

Q3: What are the causes of bilateral papilloedema without an expanding intracranial mass lesion?

The causes of bilateral papilloedema without an intracranial expanding mass lesion include:

- Malignant meningitis, particularly lymphoma with root lesions.
- Neurolipoblastoma.
- Tuberculosis.
- Metastases.

Figure 1 T1 weighted gado enhanced sagittal magnetic resonance image showing a well circumscribed 5 × 2 cm mass at D11–L2 level.
Hypertension.
• Collagen vascular diseases.
• Guillain-Barré syndrome.
• Idiopathic intracranial hypertension.
• Spinal tumour.

Q4: What are the mechanisms/processes which lead to raised intracranial pressure in patients without intracranial mass lesions?

Bilateral papilloedema and diplopia without an expanding intracranial mass lesion in a patient with spinal cord tumours have been reported in the past. Raised CSF protein (causing delayed absorption of CSF due to increased viscosity) and leptomeningeal inflammation (due to the toxic effect of CSF protein causing compromise of CSF absorption) are another possible mechanism for raised intracranial pressure.

The spinal canal acts as an elastic reservoir for CSF. With normal changes in physiological cerebral blood flow, the ability of the CSF to flow into and out of the spinal canal is thought to be important in maintenance of a constant intracranial volume. By compromising this system spinal tumours may in fact reduce the capacity of this reservoir and cause papilloedema.

Final diagnosis
Spinal ependymoma with intracranial hypertension.

References

A smoker with an apical mass

Q1: Describe the abnormalities shown in figs 2 and 3 (see p 629)

The chest radiograph suggests that the lesion extends medially to the lateral border of the spinal cord and is causing minimal displacement of the cord. If the tumour were to extend further medially, neurological symptoms resulting from cord compression might arise. Similarly, if the lesion was to further deform the structure of the vertebral body, vertebral collapse might arise.

Outcomes
In view of the proximity of the lesion to the spinal cord, thoracotomy rather than thoracoscopic resection was considered the preferred surgical approach. The patient proceeded to a right posterolateral thoracotomy in the fourth intercostal space, and a soft yellow dumbbell shaped mass measuring 30 × 30 mm was discovered in the right third intercostal space, extending into the transverse foramen. The lesion was excised and histological examination showed a partially encapsulated tumour composed of spindle cells in a collagenous background. Antoni type A and B components were present with focal Verocay body formation. The histopathologist concluded that the lesion was a benign neuroectodermal tumour. The patient had an uneventful postoperative recovery. Four months after her operation, she remains well, her symptoms have resolved, and there is no radiological evidence of recurrence of the lesion.

Discussion
Neurogenic mediastinal tumours account for approximately 20% of all mediastinal tumours in adults and 40% in children. These tumours may be of nerve sheath, autonomic ganglia, or paraganglion origin and are generally located in the posterior mediastinum. Neurogenic tumours of the mediastinum with an
Malignant schwannomas have been described as benign but may occasionally be malignant. These tumours may be neurofibromas, schwannomas, granular cell tumours, melanotic schwannomas, or malignant schwannomas. Schwannomas are most often benign tumours originating from the sheath of peripheral nerves and usually present as solitary and well encapsulated tumours. Most are asymptomatic and are detected incidentally on a routine chest radiograph. Schwannomas arising from the intercostal nerve are well described and may be multiple. Intradural schwannomas may also arise from other nerves, such as the phrenic and glossopharyngeal nerves. Schwannomas are usually benign but may occasionally be malignant. Malignant schwannomas have been described in patients with neurofibromatosis.1

Of special concern in the management of neurogenic tumours arising in the thorax is spinal cord compression resulting from either intraspinal lesions or vertebral body destruction and collapse.2 Predictably, this complication makes for a more difficult surgical excision. Intercostal schwannomas have been successfully resected thoracoscopically. This approach reduces hospital stay and minimizes postoperative complications, but is best reserved for lesions in which there is no evidence of intraspinal extension.3

The diagnosis of mediastinal tumours has been aided by recent advances in computed tomography, MRI, ultrasonography, radionuclide scanning, and fine needle aspiration. MRI is the preferred modality for imaging neurogenic tumours, because of its multiplanar capability and high contrast resolution. MRI can best demonstrate the number and nature of the lesions (differentiating cysts from neoplasms) and the intraspinal and cranio-caudal extent of the lesion, and thus determine the optimal surgical approach for patients. This technique is also especially useful for evaluation of the mediastinum of patients for whom the administration of iodinated contrast material is contraindicated. In cases where intraspinal extension is demonstrated, open thoracotomy is the more suitable approach, as the likelihood of conversion to open thoracotomy during thorascopic resection is high. However, the definitive diagnosis of schwannoma requires histological examination.

Final diagnosis

Benign schwannoma, fourth intercostal space.

References

A man with a chest mass

Q1: What is the interpretation of the biopsy specimen (see p 629)?

The specimen is an excision biopsy of the tumour. Cut section of the mass shows a variated appearance with areas of haemorrhage, cystic changes, and necrosis. The histological findings are those of metastatic adenocarcinoma.

Q2: What are the different types of rib tumours?

The bone metastases is either osteoclastic (often squamous cell carcinoma), osteolytic (prostate carcinoma, poorly differentiated adenocarcinoma, and breast carcinoma in young patients), intratrabeular, or of mixed type.

Q3: What is the mode of spread to the rib?

Bone marrow metastases is either via the transpulmonary route, or the vertebral venous system—the latter results in metastases to the spine.1 The frequency of bone metastases via the vertebral venous plexus without pulmonary metastases is 30% for carcinoma of the prostate, 10.4% for uterine, 7.4% for breast, and 3.5% for stomach.2

Discussion

The patient has a rib secondary from an obscure primary. Detailed gastrointestinal tract evaluation and chest examination were non-contributory.

Moriwaki has described different types of rib tumours.3 These can be further classified as benign or malignant—the latter are often secondaries from a primary in the lung (35%).4

Micrometastases from gastro-oesophageal malignancy has been reported.1 Oesophagogastric malignancy results in micrometastases of ribs in 88% and in the iliac crest in 15%.5 These are independent of the histological type, nodal status, and neoadjuvant therapy.1 Micrometastases is less common.

Yang et al described three sonographic patterns on cross section of abnormal ribs:6 ultrasound guided biopsy yields a 100% result without any complications and is an ideal method of confirming the diagnosis.

Management depends on the histopathology and is often directed to the primary site. Large tumours, as in our case, require surgical resection followed by chemotherapy. The patient is doing well six months after the resection. Failure to find the primary tumour poses problems in management. Yet it remains controversial whether the prognosis improves when the primary tumour is identified by intensive diagnostic search as in the present case.7 Overall the prognosis is poor.

Final diagnosis

Adenocarcinoma of the rib.

References
