Ultrasononographic findings and differentiation of benign and malignant focal splenic lesions

Y L Wan, Y C Cheung, K W Lui, J H Tseng, T Y Lee

Abstract

The purpose of this study was to analyse the sonographic findings of focal splenic lesions with an attempt to differentiate benign lesions from malignancies. The sonographic findings of 53 cases of verified focal splenic lesions, excluding post-traumatic haematomas and phleboliths, were retrospectively analysed. Of the 53 cases, 30 cases (57%) were benign and 23 cases (43%) were malignant. The malignancies included lymphoma (n=13), metastases (n=10); while the benign lesions included cysts (n=17), infarcts (n=3), and abscesses (n=5), and one case each of haemangioma, hamartoma, spontaneous rupture, tuberculosis, and lymphangioma. Significant differences were noted between the benign and malignant groups with respect to the presence of solitary lesions (p<0.0001), anechoic mass (p<0.0001), lesions with highly echogenic foci due to gas or calcification (p=0.0303), hyperechoic/mixed echoic lesions (p<0.0001), presence of extrasplenic abdominal masses (p<0.0001), and nodules with the target sign (p<0.0001). Solitary lesions, anechoic mass, and lesions with highly echogenic foci due to gas or calcification each had a positive predictive value of 85%, 100%, and 100%, respectively, for the lesions to be benign. The multifocal/diffuse lesions, presence of extrasplenic abdominal masses, hyperechoic/mixed echoic lesions, and nodules with the target sign each had a positive predictive value of 70%, 100%, 70%, and 100%, respectively, for the lesions to be malignant. In summary, focal lesions with anechoic pattern or echogenic foci due to gas or calcification are suggestive signs of benign process. The sonographic observations of multifocal or diffuse solid lesions, especially those associated with target sign or extrasplenic abdominal masses are suggestive of malignancy.

Keywords: spleen; splenic mass; ultrasonography

Focal lesions in the spleen are rare as compared with those in other solid viscera. The focal masses can be delineated by ultrasonography, computed tomography, radionuclide studies, and magnetic resonance imaging. Reports of a large series regarding focal splenic lesions by cross sectional imaging and ultrasonography are rare. Clinical and laboratory findings of a focal splenic lesion are non-specific, and its accurate diagnosis with radiological studies is difficult. Image guided fine needle aspiration cytology or colour Doppler imaging may sometimes aid in the accurate diagnosis. However, fine needle aspiration cytology is considered an invasive procedure.

Demonstration of the focal mass and the internal architecture of the lesions is essential in making an accurate diagnosis. The malignant lesions are more likely to be multifocal due to metastases or tend to be diffuse and ill defined due to rapid growth. A benign lesion such as a cyst usually exhibits a mass with fluid content, a well defined and smooth outline, and without solid components. A soft tissue lesion associated with calcification usually indicates that the disease has been a long term process, and it is more likely to be benign. The gas in parenchyma of solid organs is usually originated from bacterial infection or arterial embolisation, and is also an indicator of benign disease. Ultrasonography has the capability of delineating these distinct characteristics of malignant and benign lesions, thus, it may provide diagnostic values in making accurate differentiation between benign and malignant splenic lesions. To our knowledge, there have been no reports dealing with the differentiation by ultrasonography in the literature.

This paper describes the sonographic findings of various focal splenic lesions, with an attempt to differentiate benign from malignant lesions. The final diagnosis of each lesion was determined by pathological examination, and/or combination of serial imaging studies and clinical data. All malignant and benign lesions were pooled separately. The discriminative power of the echo pattern of the focal splenic lesion as well as the anatomic features including splenomegaly, focal pattern, and extrasplenic abdominal neoplasms in differentiating benign from malignant lesions were assessed.

Patients and methods

Sixty verified patients with focal splenic lesions, excluding phleboliths or post-traumatic haematoma, were studied by both ultrasonography and computed tomography during a period of eight and a half years. The 53 cases (88%) detected by ultrasonography in the literature.
Focal splenic lesions

Table 1: Summary of 53 cases of focal splenic lesions detected by ultrasound

<table>
<thead>
<tr>
<th>Final diagnosis</th>
<th>No (%) of cases</th>
<th>Gender or Age (mean)</th>
<th>Splenomegaly</th>
<th>Solitary</th>
<th>Computed tomography diagnoses (No of cases)</th>
<th>Sonographic diagnoses (No of cases)</th>
<th>Method of confirmation (No of cases)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malignant</td>
<td>23 (43)</td>
<td>21:2</td>
<td>Splenomegaly</td>
<td>Solitary</td>
<td>Computed tomography: Malignancy or lymphoma (8)</td>
<td>Malignant or lymphoma (8)</td>
<td>Biopsy from other sites and imaging studies (10)</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>13 (25)</td>
<td>12:1</td>
<td>Splenomegaly</td>
<td>Solitary</td>
<td>Computed tomography: Malignancy or lymphoma (8)</td>
<td>Lymphoma (1)</td>
<td>Imaging findings and clinical data (10)</td>
</tr>
<tr>
<td>Metastases</td>
<td>10 (19)</td>
<td>9:1</td>
<td>Splenomegaly</td>
<td>Solitary</td>
<td>Computed tomography: Metastases (8)</td>
<td>Metastases (8)</td>
<td>Surgical pathology from primaries and imaging studies (9), splenectomy (1)</td>
</tr>
<tr>
<td>Cysts</td>
<td>17 (32)</td>
<td>8:9</td>
<td>Splenomegaly</td>
<td>Solitary</td>
<td>Computed tomography: Splenic cyst (11)</td>
<td>Primary (11)</td>
<td>Imaging findings and clinical data (11)</td>
</tr>
<tr>
<td>Pseudocyst</td>
<td>4 (7)</td>
<td>4:0</td>
<td>Splenomegaly</td>
<td>Solitary</td>
<td>Computed tomography: Splenic pseudocyst (2)</td>
<td>Complicated cyst (2)</td>
<td>Imaging findings and clinical data (2)</td>
</tr>
<tr>
<td>Haemorrhagic</td>
<td>1 (2)</td>
<td>M</td>
<td>Splenomegaly</td>
<td>Solitary</td>
<td>Computed tomography: Splenic haemorrhage (1)</td>
<td>Complicated cyst (1)</td>
<td>Imaging findings and clinical data (1)</td>
</tr>
<tr>
<td>Infarct</td>
<td>3 (5.7)</td>
<td>M</td>
<td>Splenomegaly</td>
<td>Solitary</td>
<td>Computed tomography: Splenic infarct (3)</td>
<td>Complicated cyst (3)</td>
<td>Imaging findings and clinical data (3)</td>
</tr>
<tr>
<td>Hamartoma</td>
<td>1 (2)</td>
<td>M</td>
<td>Splenomegaly</td>
<td>Solitary</td>
<td>Computed tomography: Hamartoma (1)</td>
<td>Hamartoma (1)</td>
<td>Splenectomy and pathology</td>
</tr>
<tr>
<td>Spontaneous rupture</td>
<td>1 (2)</td>
<td>M</td>
<td>Splenomegaly</td>
<td>Solitary</td>
<td>Computed tomography: Spontaneous rupture (1)</td>
<td>Spontaneous rupture (1)</td>
<td>Splenectomy and pathology</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>1 (2)</td>
<td>M</td>
<td>Splenomegaly</td>
<td>Solitary</td>
<td>Computed tomography: Tuberculosis (1)</td>
<td>Splenic abscess (1)</td>
<td>Splenectomy and pathology</td>
</tr>
<tr>
<td>Lymphangioma</td>
<td>1 (2)</td>
<td>F</td>
<td>Splenomegaly</td>
<td>Solitary</td>
<td>Computed tomography: Lymphangioma (1)</td>
<td>Lymphangioma (1)</td>
<td>Splenectomy and pathology</td>
</tr>
<tr>
<td>Haemangioma</td>
<td>1 (2)</td>
<td>M</td>
<td>Splenomegaly</td>
<td>Solitary</td>
<td>Computed tomography: Haemangioma (1)</td>
<td>Haemangioma (1)</td>
<td>Splenectomy and pathology</td>
</tr>
<tr>
<td>Haemangioma</td>
<td>1 (2)</td>
<td>M</td>
<td>Splenomegaly</td>
<td>Solitary</td>
<td>Computed tomography: Haemangioma (1)</td>
<td>Haemangioma (1)</td>
<td>Splenectomy and pathology</td>
</tr>
<tr>
<td>Splenic abscess</td>
<td>5 (9.3)</td>
<td>M</td>
<td>Splenomegaly</td>
<td>Solitary</td>
<td>Computed tomography: Splenic abscess (5)</td>
<td>Splenic abscess (5)</td>
<td>Splenectomy and pathology</td>
</tr>
<tr>
<td>Infections</td>
<td>1 (2)</td>
<td>M</td>
<td>Splenomegaly</td>
<td>Solitary</td>
<td>Computed tomography: Infections (1)</td>
<td>Infections (1)</td>
<td>Splenectomy and pathology</td>
</tr>
<tr>
<td>Total</td>
<td>53 (100)</td>
<td>37:16</td>
<td>Splenomegaly</td>
<td>Solitary</td>
<td>Computed tomography: Infections (1)</td>
<td>Infections (1)</td>
<td>Splenectomy and pathology</td>
</tr>
</tbody>
</table>

*Note: The infective bacteria in five cases of splenic abscess included *Escherichia coli* in two cases, and *Salmonella choleraesuis*, *Bacteroides fragilis*, and *Pseudomonas aeruginosa* in one case each.*

The malignant lesions were pooled, as were the benign lesions. The percentages of benign or malignant lesions displaying each of the above mentioned ultrasonography feature were recorded. The discriminative capability of each feature between malignant and benign groups was assessed. Differences between the benign and malignant groups were tested using the Fisher’s exact test. A p value of ≤0.05 was considered statistically significant.
Results
LYMPHOMAS
Of the 13 cases with lymphoma, a diffusely heterogeneous pattern with mixed echogeneity was found in three, nodules with target sign in two (fig 1), and were hypoechoic in seven (fig 2). In one case the lesion appeared complex, which was caused by chemotherapy. Tumours were observed elsewhere in the abdomen by ultrasonography in nine (69%) and by computed tomography in 10 (77%) of the 13 patients (fig 2).

METASTASES
Among 10 cases of splenic metastases, the lesions were hyperechoic in four patients, two with primary colon cancer, one with nasopharyngeal carcinoma, and the other with gastric cancer (fig 3). Nodules in a patient with lung cancer exhibited a target sign. Deposits in a patient with nasopharyngeal carcinoma after chemotherapy were complex. Lesions in the remaining four cases were hypoechoic, including one case each with primary melanoma, lung cancer, oesophageal cancer, and an unknown cancer (fig 4). In 70% of the patients, metastases were also seen elsewhere in the abdomen on sonograms.

CYSTS
The 17 cases of cysts included 11 primary cysts, two post-traumatic pseudocysts, two pancreatic pseudocysts, one epidermoid cyst, and one haemorrhagic cyst (fig 5). Calcification was found in three of 11 primary cysts. The primary cysts in 10 cases were unilocular and ranged from 1.5–4.7 cm in diameter (mean 3 cm); three had incomplete septa, including one associated with punctate calcifications.

INFARCTS, ABScessES, AND OTHERS
The infarcts in three cases were hypoechoic and wedge shaped at the periphery (fig 6). Two abscesses were hyperechoic and cast a dirty shadow due to the presence of gas (fig 7). The echo pattern in other three abscesses demonstrated hypoechoic, hyperechoic, and a complex pattern in one case each. The lesion in one case each of hamartoma, tuberculosis, and lymphangioma appeared hypoechoic. The lesion caused by spontaneous splenic rupture and a haemangioma with necrosis and infarcts showed a diffusely mixed echo pattern on sonograms.

STATISTICAL STUDIES
The ultrasonography findings of benign and malignant lesions are summarised in table 2. There were no significant differences between the benign and malignant groups with respect to the presence of splenomegaly and complex nodules. However, there were significant differ-
ences between the benign and malignant groups with respect to the presence of focal pattern \((p<0.0001) \), presence of neoplasms elsewhere in the abdomen \((p<0.0001) \), anechoic mass \((p<0.0001) \), hyperechoic/mixed echoic lesions \((p<0.0001) \), nodules with target sign \((p<0.0001) \), and lesions with highly echogenic foci due to gas or calcification \((p = 0.0303) \). The solitary lesion, anechoic mass, and lesions with highly echogenic foci due to gas or calcification each had a positive predictive value of 85%, 100%, and 100%, respectively, for the lesions to be benign. The multifocal/diffuse lesions, presence of neoplasms elsewhere in the abdomen, hyperechoic/mixed echoic lesions, and nodules with a target sign each had a positive predictive value of 70%, 100%, 70%, and 100%, respectively, for the lesions to be malignant.

Discussion

In this study, 53 (88%) of 60 cases of focal lesions evident on computed tomography could be seen by ultrasonography. The lesions undetected were three infarcts, two metastatic deposits, one cyst, and one lymphoma. All undetected lesions were either isoechic, located beneath the diaphragm, or at the surface of the spleen. Infarcts were the most common lesions undetected by ultrasonography. Intravenous administration of contrast medium on computed tomography made the infarcts conspicuous.

FOCAL PATTERN

In our series, multifocal or diffuse solid lesions occurred more often in malignant processes with a frequency of 83%. However, benign diseases such as infarcts, abscesses, and pseudocysts could also be multifocal, therefore other criteria should be used for further differentiation.

EXTRASPLENIC ABDOMINAL MASSES

The findings of abdominal neoplasms outside the spleen occurred exclusively in the malignant group. In patients with lymphoma, extrasplenic abdominal masses were found in 69% and 77% of our cases by ultrasonography and computed tomography, respectively, and in 100% of 43 cases in other series. In cases of widespread metastases, splenic involvement is noted at necropsy by a frequency of 50%, and the deposits were grossly visible in 67% of patients. Metastases confined to the spleen are rare. In our series of metastases, the finding of extrasplenic abdominal masses in 75% of cases by computed tomography and in 70% of patients by ultrasonography is in agreement with the figure of 81% reported in other series. Cancer from various organs may metastasise to the spleen. From the current study and previous reports, up to 44% of benign and 48%–93% of malignant lesions

HYPERECCHOIC, HYOECCHOIC, AND COMPLEX PATTERNS

The splenic deposits in this series from nasopharyngeal carcinoma, colon, or gastric cancer were hyperechoic. Benign lesions exhibiting hyperechoic include haemangioma, splenoma, Gamma-Gandi bodies, Gaucher’s disease, old infarcts, haematoma, abscess, and extramedullary haematopoiesis. From the current study and previous reports, up to 44% of benign and 48%–93% of malignant lesions
were reported to be hypoechoic. Therefore, we suggest that focal splenic lesions should not be differentiated as benign or malignant merely on the bases of low or high echogeneity. A complex echo pattern was encountered in one case each of abscess, nasopharyngeal carcinoma, and lymphoma after chemotherapy in our patients. Complex lesions have been described in malignant and benign cases, thus not capable of providing useful information for differential diagnosis.

TARGET-LIKE PATTERN
Target lesions were observed in 15.4% of our lymphoma patients and in 10% of cases with metastases. Most splenic target nodules represented metastases, although splenic candidiasis with a “wheels within wheels” appearance in its early course may later evolve to a target-like appearance. It is believed that the target-like appearance may represent histologically an area of central necrosis surrounded by zones of viable tumour cells and/or compressed or atrophic parenchyma.

CALCIFICATION AND GAS
In this study, calcification was observed in three cases of splenic cyst and in one case of tuberculosis. In a literature review, almost all

Learning points
- The ratio of benign versus malignant focal splenic lesions is 1.3. The common malignant lesions are lymphoma and metastases.
- The common primaries of the metastases arise from the breast, lung, ovary, stomach, skin, prostate, colon, liver, and pancreas in decreasing order of frequency. Around 70%–81% of patients with splenic malignancy have concurrent neoplasms elsewhere in the abdomen.
- Splenic cyst is the most common benign lesion. The other benign lesions include infarcts, haemangioma, lymphangioma, hamartoma, abscess, granulomatous disease or tuberculosis, fungus infection or candidiasis, Gaucher’s disease, inflammatory pseudotumour, Pneumocystis carinii infection, and extramedullary haematopoiesis.
- Ultrasonography can detect 88% of the focal splenic lesions evident on computed tomography. Infarcts are the most common lesions overlooked by ultrasound.
- The presence of solitary lesion, anechoic mass, and lesions with highly echogenic foci due to gas or calcification are suggestive of benign process and each has a positive predictive value of 85%, 100%, and 100%, respectively.
- The hyperechoic/mixed echoic lesions, multifocal/diffuse lesions, presence of neoplasms elsewhere in the abdomen, and nodules with the target sign are suggestive of malignancy and each has a positive predictive value of 70%, 70%, 100%, and 100%, respectively.
calcification occurs in benign lesions, these include hamartoma, tuberculosis, histoplasmosis, phleboliths, infarction, haemangiomata, true/false cysts, Pneumocystis carinii infection, and inflammatory pseudotumour.

In a series of 172 patients, 13 cases of splenic calcification and two cases of non-parasitic calcified cysts were found, and all proved to be benign.2 Calcification is extremely rare in malignant splenic lesions. There were only two cases of metastatic deposits from ovarian cancer ever being reported to exhibit calcification.3 13 The sonographic demonstration of gas content in splenic abscess, which happened in two of our five cases, has been described previously.9 Spenic gas may also be found after splenic embolisation.16

Table 2 Ultrasonographic findings of benign versus malignant focal splenic lesions

<table>
<thead>
<tr>
<th></th>
<th>Benign (%)</th>
<th>Malignant (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=53)</td>
<td>(n=23)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p Value</td>
</tr>
<tr>
<td>Splenomegaly</td>
<td>18 (60)</td>
<td>15 (65.2)</td>
</tr>
<tr>
<td>Solitary (± multifocal/diffuse)</td>
<td>22 (73.3)</td>
<td>4 (17.4)</td>
</tr>
<tr>
<td>Neoplasms elsewhere in the abdomen</td>
<td>0</td>
<td>16 (69.6)</td>
</tr>
<tr>
<td>Echo pattern of lesions in 53 cases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anechoic mass without calcification</td>
<td>14 (46.7)</td>
<td>0</td>
</tr>
<tr>
<td>Hypoechoic</td>
<td>6 (20)</td>
<td>11 (47.8)</td>
</tr>
<tr>
<td>Hypoechoic or mixed</td>
<td>3 (10)</td>
<td>7 (30.4)</td>
</tr>
<tr>
<td>Target-like</td>
<td>0</td>
<td>3 (13.1)</td>
</tr>
<tr>
<td>Complex</td>
<td>1 (3.3)</td>
<td>2 (8.7)</td>
</tr>
<tr>
<td>Lesions with high echoes and shadowing due to gas (2 cases) and calcification (4 cases)</td>
<td>6 (20)</td>
<td>0</td>
</tr>
</tbody>
</table>

Ultrasonographic findings and differentiation of benign and malignant focal splenic lesions

Y L Wan, Y C Cheung, K W Lui, J H Tseng and T Y Lee

Postgrad Med J 2000 76: 488-493
doi: 10.1136/pmj.76.898.488

Updated information and services can be found at:
http://pmj.bmj.com/content/76/898/488

These include:

References
This article cites 31 articles, 2 of which you can access for free at:
http://pmj.bmj.com/content/76/898/488#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Immunology (including allergy) (396)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/