Epidemic dropsy in India

B D Sharma, Sanjay Malhotra, Vikram Bhatia, Mandep Rathee

Epidemic dropsy results from ingestion of edible oil adulterated with *Argemone mexicana* (Mexican Poppy) oil. The outbreak of epidemic dropsy in the Indian capital, New Delhi, during the rainy season of 1998 was of one of the most severe forms and had repercussions in both health and political circles. Some 2552 cases were reported and 65 deaths occurred between 5 August and 12 October, causing untold misery and economic loss to the affected families. The actual figures are likely to be much higher due to nonreporting of milder cases to the hospitals. The aim of this article is to consolidate and update the available information on clinical aspects of epidemic dropsy.

The condition was first reported by Lyon in 1877 from Calcutta1 and has since occurred in other countries including the Fiji Islands, Mauritius, Madagascar, South Africa and Burma (Myanmar).2 In India, it has been reported from time to time from the States of West Bengal, Bihar, Orissa, Madhya Pradesh, Uttar Pradesh, Gujarat, Maharashtra and Delhi,2–13 generally sparing South Indian States where the predominant cooking fat is coconut oil.

The word *Argemone* is derived from the Greek *argemon* meaning cataract in the eye, as the juice of the plant was used as a remedy in diseases of the eye. In India the plant has numerous vernacular names of which *Satyanashi* meaning devastating seems most appropriate.14 The Prickly Poppy has been used as a medicinal plant in several cultures.

Aetiology

Based upon numerous epidemiological and clinical studies and human and animal feeding trials, it has been firmly established that *Argemone* oil is responsible for epidemic dropsy.1–15 It occurs due to the use of contaminated mustard oil (with which *Argemone* oil is completely miscible)20 for cooking and massage.21 Adulteration of other types of oils (linseed, rapeseed, groundnut, and other vegetable oils) has also been reported.22–24 In South Africa, an epidemic occurred due to contamination of wheat flour. Other contributory factors are the consumption of a diet rich in carbohydrates and low in proteins, as well as poor premorbid nutritional status. It has been observed that those consuming a protein-rich diet tend to develop a relatively mild form of dropsy.22 The active toxic principle of *Argemone* oil, the alkaloid sanguinarine, is able to withstand normal cooking temperatures and hence appears to be heat stable. While Lal and Dasgupta observed that a minimum concentration of 1% of *Argemone* oil as an adulterant was necessary to produce clinical features,15 Ramasastri and Babu have proposed a maximum permissible upper limit of 0.01% in edible oils.23 The duration of exposure is also of vital importance. Sanguinarine can be retained in the gastrointestinal tract, liver, lung, kidney, heart and serum, for up to 96 hours after ingestion, due to binding to plasma proteins.22–24 This may lead to cumulative toxicity even with low-dose exposure over prolonged period.29

Pathophysiology

The exact pathophysiology of epidemic dropsy is not well understood. Sanguinarine has been shown to produce widespread capillary dilatation coupled with increased capillary permeability, and produces clinical features similar to epidemic dropsy under experimental conditions.30 The chief effects of *Argemone* oil are on the blood vessels,31 where they cause leakage of protein-rich plasma components into the extravascular compartment, leading to a state of hypovolemia and reduced plasma osmotic pressure. The resultant decrease in renal blood flow sets into motion compensatory mechanism with activation of the renin–angiotensin–aldosterone system, and retention of sodium and water. The fluid and salt thus conserved may compensate for the expanded vascular capacity and increased permeability in mild cases of epidemic dropsy. However, in severe cases these compensatory mechanisms may prove to be inadequate because fluid and salt conserved by kidneys is poorly held in the vascular com-
Mechanism of toxicity of *Argemone* alkaloids

- inhibition of Na+, K+-ATPase
- destruction of cytochrome P-450
- depletion of endogenous hepatic glutathione content
- enhanced glucogenolysis leading to depletion of glycogen levels in liver
- formation of glucose-1-phosphate, exhausting glycogen levels in liver
- inhibition of the oxidation of pyruvate, lactate and succinate
- binding at multiple sites on DNA which may decrease capacity for DNA repair
- phototoxicity, blocking of hepatic enzymes and inhibition of RNA and DNA polymerase activities

Box 1

Persons of all ages are affected, except breast-fed infants and toddlers who have no mustard oil in their diets. The disease is seen mostly in epidemic form but isolated cases also occur occasionally. Both sexes are affected equally. In India the incidence reaches its peak in July to August when newly extracted oil harvested towards the end of summer is sold. Due to a decrease in toxicity during storage of oil, the incidence is lowest in April.

Onset is usually subacute or insidious with watery diarrhoea and vomiting. This lasts from a few days to more than a week. In a few outbreaks diarrhoea was not a common feature at the outset but it usually precedes the onset of oedema. Gastrointestinal disturbances at onset have been reported by various investigators in 52–80% of cases. Intermittent or continuous fever, ranging from 99° F to 100.5° F, is noted commonly but is seldom high-grade. Arthralgias, myalgias, low backache are also seen. Significant hair loss is observed occasionally. Telangiectases and sarcoids under the skin and mucus membranes, including anal mucosa, may appear. These can cause blood loss, which may be severe and contribute to anaemia.
Palpitations, exertional breathlessness and orthopnoea may be seen. Tachycardia, elevated jugular venous pressure and wide pulse pressure are common. Clinical evidence of cardiomegaly may be found. Gallop rhythm and an apical systolic murmur due to functional mitral incompetence may be present. Flow murmurs at the base are common due to associated anaemia and high output state. Pulmonary oedema may be seen in severe cases. Pericardial effusion may also occur. Cough and breathlessness are common symptoms. Initially exertional, the breathlessness may be seen at rest and on recumbency when cardiac failure develops. Pneumonia is seen in some cases. High fever, chest pain and purulent sputum may not be present and occult infection may be discovered on a routine chest X-ray. The condition responds to the usual antibiotics although microbiological evidence of aetiology is lacking. Pleural effusions are occasionally seen. Though not a feature in previous epidemics, mild to moderate derangement in renal function was occasionally encountered in the recent Delhi epidemic. The renal size is normal on ultrasonography, and the urine sediment is bland. Dialysis may be required and recovery is normally complete.

Sensorium is normal. No objective sensory loss is demonstrable and all peripheral reflexes are present. Electrophysiological studies of peripheral nerves and muscles are normal. However, paresthesias and pain in the oedematous limbs are prominent early complaints. Fundus examination shows venous dilation and tortuosity, haemorrhages and disc oedema. Fluorescein angiographic findings include dilated and tortuous retinal veins, prominent vascular staining, microaneurysms, disc oedema and pericapillary dye spillage. Glaucoma has been reported in various epidemics in 0–12% of cases. This is a later manifestation occurring after about 4 weeks. During the early stages, there may be no dimness of vision and perimetry may also reveal no field defects. During later stages glaucomatous field defects may be present. If undetected, it may lead to severe visual impairment. All cases of epidemic dropsy should be subjected to regular eye examinations for 8–12 weeks. The severity of the glaucoma is independent of the severity of the systemic features. The glaucoma is always bilateral with no aqueous outflow obstruction. There is no sign of anterior segment inflammation and the chamber depth is normal. Moderate to severe anaemia is one of the commonest manifestations. It is usually normocytic, and normochromic but may be hypochromic in those cases which develop bleeding manifestations.

Diagnosis

Epidemic dropsy must be distinguished from hypoproteinaemic states, filariasis, venous insufficiency, and Beri-Beri, hypothyroidism and nephrotic syndrome. The diagnosis must be considered during an outbreak of bilaterally symmetric oedema in more than one member of a family or community consuming mustard oil, especially if peripheral tendon jerks are well preserved. Beri-Beri occurs among poor persons living on a diet of milled rice, has an acute onset, prominent peripheral neuropathy and responds rapidly to thiamine therapy with brisk diuresis. No laboratory parameter is considered specific for epidemic dropsy. Anaemia may be severe and is of microcytic hypochromic or normocytic normochromic type. Liver function tests are usually normal. Blood urea and creatinine may be raised if renal failure is present. Hypoalbuminaemia, raised alpha-2 globulin and reversal of albumin:globulin ratio has been reported by some investigators. Urinalysis is usually normal.

Raised plasma pyruvate levels may be seen. Chest X-ray may show cardiomegaly, pulmonary oedema or pneumonia. Electrocardiogram may show nonspecific ST segment, and T-wave changes or atrial or ventricular extrasystoles.

Identification of the *Argemone* seed

Adulteration of light-yellow mustard seeds (*Brassica dompestris*) by *Argemone* seeds can be visually detected. However, they are more similar in colour to the dark mustard seeds (*Brassica nigra*), and are thus less easily detected. The specific gravity of *Argemone* seeds is 1.03 compared to 1.3 for mustard seeds. Hence, in normal saline solution, the mustard oil seeds settle at the bottom while *Argemone* seeds remain suspended.

Composition of *Argemone* oil

Mukerjee *et al* isolated a toxic substance from *Argemone* oil in 1941, with an empirical formula C_{20}H_{15}NO_{4} that was later identified as sanguinarine. Sarkar *et al* in 1948 reported the presence of at least two toxic alkaloids, sanguinarine and dihydrosanguinarine.
Argemone seeds yield 32–35% of Argemone oil (v/w)\(^1\) which contains 0.13% total alkaloids. The alkaloid composition of Argemone is given in box 2.

Box 2

Alkaloid composition of Argemone oil

<table>
<thead>
<tr>
<th>Major alkaloids</th>
<th>Minor alkaloids</th>
</tr>
</thead>
<tbody>
<tr>
<td>● dihydrosanguinarine 87%</td>
<td>● berberine 0.57%</td>
</tr>
<tr>
<td>● sanguinarine 87%</td>
<td>● protopine 0.34%</td>
</tr>
<tr>
<td>● chelerythrine 0.12%</td>
<td>● cotisine 0.03%</td>
</tr>
</tbody>
</table>

Detection of Argemone oil adulteration in edible oils

The following tests are useful:\(^4\)

Nitric acid test: 5 ml oil is shaken with an equal volume of nitric acid. On standing, the acid layer turns yellow, orange-yellow or crimson, depending upon the amount of Argemone oil. The test is sensitive to a concentration of >0.25%. It has a high false-positive rate and a positive test must be confirmed.

Ferric chloride test: 2 ml of oil and 2 ml of concentrated hydrochloric acid are mixed and heated in a water bath at 33.5–35\(^\circ\)C for 2 minutes. Then 8 ml of ethyl alcohol is added and the mixture is heated in the bath for 1 minute. Finally, 2 ml of ferric chloride is added and the tube is heated in the bath for a further 10 minutes. If Argemone oil is present, an orange-red precipitate is formed.

Cupric acetate test: a green colour is formed.

Paper chromatographic method: the most sensitive method; can detect down to 0.0001% Argemone oil adulteration.

Treatment

Withdrawal of the contaminated cooking oil is the most important initial step. Bed rest with leg elevation and a protein-rich diet are useful. Supplements of calcium, antioxidants (vitamin C and E),\(^37\) 55 and thiamine and other B vitamins are commonly used.\(^1\) Corticosteroids and antihistaminics such as promethazine have been advocated by some investigators,\(^25\) 65 but demonstrated efficacy is lacking. Diuretics are used universally but caution must be exercised not to deplete the intravascular volume unless features of frank congestive cardiac failure are present, as oedema is mainly due to increased capillary permeability. Cardiac failure is managed by bed rest, salt restriction, digitalis and diuretics. Pneumonia is treated with appropriate antibiotics. Renal failure may need dialysis therapy and complete clinical recovery is seen. Glaucoma may need operative intervention, but generally responds to medical management.

Prognosis

Mortality is usually due to heart failure, pneumonia, respiratory distress syndrome or renal failure and is around 5%.\(^25\) Long-term follow-up studies are scanty so the long-term effects of Argemone oil toxicity have not been documented. Wadia \etal\ reported that 25% of cases will have oedema beyond 2 months and 10% beyond 5 months.\(^6\) Shanbag \etal\ noticed pigmentation of skin and excessive loss of hair, which lasted 4–5 months following the disease.\(^6\) The majority of patients completely recover in about 3 months.

Prevention

A number of measures may help to prevent epidemic dropsy in India:

- selective cultivation of yellow-seeded mustard with which neither black-coloured Argemone seeds nor dark-brown Argemone oil mixes well so that adulteration can easily be detected even with the naked eye
- a strict ban on the sale of unbranded and unpacked mustard oil, and a statutory certificate from manufacturers of labelled mustard oils about the freedom of the contents from Argemone alkaloids
- education and motivation of farmers to cultivate yellow-seeded mustard and to make them aware of the identity of Argemone plants which grow as weeds in mustard fields
- government agencies involved in enforcing the provisions of the Prevention of Food Adulteration Act must be made accountable in the event of occurrence of such epidemics. This means exemplary punishments for unscrupulous traders.

1 Lyon IB. *Textbook of medical jurisprudence for India*, 1st edn. 1889; p 214.
Epidemic dropsy

Epidemic dropsy in India

B D Sharma, Sanjay Malhotra, Vikram Bhatia and Mandeep Rathee

Postgrad Med J 1999 75: 657-661
doi: 10.1136/pgmj.75.889.657

Updated information and services can be found at:
http://pmj.bmj.com/content/75/889/657

These include:

References
This article cites 53 articles, 3 of which you can access for free at:
http://pmj.bmj.com/content/75/889/657#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/