Carbimazole – resistant thyrotoxicosis

Sir,
We read with interest the report of two cases of thyrotoxicosis apparently resistant to high doses of carbimazole.1 In searching for the cause of a poor therapeutic response to antithyroid drugs, several possibilities must be considered. As pointed out by Cooper,2 iodine does affect the response of the thyroid to antithyroid drugs; therefore, a perchlorate discharge test four hours after taking carbimazole under antithyroid-medical supervision; a negative perchlorate test indicating an inadequate blockade of iodide organification and thus a possible carbimazole resistance, a positive test indicating the possibility of some degree of iodide organification block, and, therefore a possible lack of compliance.3 Regardless of the problem of compliance, iodine contamination should have followed urinary iodine excretion. Iodine does affect the response of the thyroid to antithyroid drugs, directly altering the intrathyroidal metabolism of the drug and indirectly increasing the thyroid stores of prodrug, thereby delaying the response to treatment.4 Such mechanisms are involved in the resistance to antithyroid drugs of amiodarone-or iodine-induced thyrotoxicosis which may persist for months. One important factor to consider in these cases is that iodine-contaminated drugs partially or totally resistant to antithyroid drugs may show a dramatic reaction to glucocorticoids,5,6 as the two cases reported here show. Therefore, we think that an unsuspected iodine contamination may have played a role in the unresponsiveness of these two patients to high doses of carbimazole and should have been discussed.

B CORVILAI
P SCHINNOHRS
Department of Endocrinology,
Erasmus Hospital,
Free University of Brussels,
B-1070 Brussels, Belgium

Gastrointestinal disorders in Parkinson's disease

Sir,
Gastrointestinal disorders are common in Parkinson's disease. Although the underlying pathophysiology remains largely unknown, enteric nervous dysfunction and subsequent gastrointestinal motility disorder leading to small bowel bacterial overgrowth with malabsorption is an attractive hypothesis. Davies et al7 recently used the lactulose hydrogen breath test to study whether increased oroacetal transit time and small bowel bacterial overgrowth could explain weight loss in Parkinson's disease. None of their 15 patients showed an early rise in breath hydrogen, which led the authors to conclude that bacterial overgrowth is a minor contributory factor. We object to this conclusion for several reasons. First, the lactulose hydrogen breath test is a questionable tool to diagnose small bowel bacterial overgrowth.8 The condition sine qua non for this test is the presence of a hydrogen-producing flora, but in 15–20% of tested subjects the gut flora will not meet this condition.9 Therefore, the fact that none of the patients studied by Davies et al10 had an early rise of breath hydrogen excretion does not exclude small bowel bacterial overgrowth. Furthermore, the authors cite the study by Metz et al11 as evidence that the lactulose hydrogen breath test is a reliable measure to detect bacterial overgrowth. However, this study in fact showed that the lactulose hydrogen breath test has a rather poor sensitivity (approximately 67%).9 Preferentially, the authors should have followed the recommendation of Metz et al11 to use a combination of breath tests to screen for small bowel bacterial overgrowth. Alternatively, the authors could have used the more invasive method of quantitative measurement of duodenal or jejunal aspirates, which remains the most accurate diagnostic tool to demonstrate small bowel bacterial overgrowth, especially when gastrointestinal motility disorders are suspected.11 Second, one would have expected to find small bowel bacterial overgrowth since oroacetal transit time was increased in 10 of the 15 patients with Parkinson's disease. Disturbed small bowel bacterial flora may be an important bacterial overgrowth, due to disturbed small bowel motility, may at least partially explain weight loss, malabsorption and other gastrointestinal disorders in Parkinson's disease.

VINCENT B NIEUWENHUIS
Department of Surgery,
University Hospital Utrecht,
3508 GA Utrecht, The Netherlands

BR BLEUM
Department of Neurology,
Leiden University Hospital,
2300 RC Leiden, The Netherlands

Accepted 16 April 1997

2 Nieuwenhuis VB, Akkermans LM. The intractable infection. Eight years postmortem with GePD-deficient patient confirmed by rechallenge. A 48-year-old woman was hospitalised with complaints of malaise, weakness, abdominal and lumbar pain 24 h after initiation of treatment with oral spiramycin (1 g bid) for fever and symptoms of an upper respiratory tract infection. Eight years prior, she had been diagnosed with GePD A-deficiency, when she suffered from several sulfonamide- and acetanilide-induced haemolytic episodes requiring blood transfusions. The laboratory data were: haemoglobin 7.7 g/dl, haematocrit 24.4%, reticulocyte count 4.5%, whole blood count 12.4 × 10^6/µl, platelet count 224 × 10^9/µl. The lactate dehydrogenase concentration was markedly elevated (1823 U/L, normal c.300). Three days after the spiramycin therapy, she was afebrile but nauseated, icteric, and passing dark urine. The liver was 3 cm below the right costal margin and the spleen was not palpable. Serum bilirubin was 2.9 mg/dl (normal < 1.0 mg/dl) with preponderant unconjugated bilirubin fraction (2.8 mg/
dl) and serum creatinine 1.6 mg/dl. Hepatic enzymes were normal. Urine was hyperchro-
mico with increased urobioligeno concentra-
tion. She had mild haemoglobinemia and haemoglobinuria. Coom’s test and a viral test for HbsAg, anti-Hb, Ag IgM, and anti-
Hcv were negative. A blood film showed polychromatophilia, poikilocytosis, Heinz bodies, bite cells, and erythrocytes with uneven distribution of haemoglobin (hemi-
ghosts). Chest x-ray was normal. Throat swab, and blood cultures grew no organism. She received one unit of compatible blood and spiramycin was discontinued. One week after acute haemolysis, her haemoglobin was 11.6 g/dl and lactate dehydrogenase, reticu-
locyte count, renal and hepatic functions became normal.

Six weeks after recovery, informed consent was obtained and spiramycin re-instituted. Within 2 h of rechallenge, acute haemolysis had recurred. The clinical and laboratory abnormalities settled rapidly within four days on ceasing spiramycin. The patient is well 14 days after discharge.

A variety of drugs, toxins, and infections cause haemolysis in G6PD-deficient indivi-
duals by posing oxidant threat to erythro-
cytes.1,2 The macrolide spiramycin has been used in a similar way to erythromycin in susceptible infections.5 The adverse effects of spiramycin are also similar to those of erythromycin; the most frequent being gastro-
intestinal disturbances, and skin hyper-
sensitivity.2 In our case, the acute haemolysis induced by spiramycin after complete recovery from the febrile illness suggests the drug to be the triggering oxidative agent of the haemolysis.

Six weeks after recovery, informed consent was obtained and spiramycin re-instituted. Within 2 h of rechallenge, acute haemolysis had recurred. The clinical and laboratory abnormalities settled rapidly within four days on ceasing spiramycin. The patient is well 14 days after discharge.

A variety of drugs, toxins, and infections cause haemolysis in G6PD-deficient indivi-
duals by posing oxidant threat to erythro-
cytes.1,2 The macrolide spiramycin has been used in a similar way to erythromycin in susceptible infections.5 The adverse effects of spiramycin are also similar to those of erythromycin; the most frequent being gastro-
intestinal disturbances, and skin hyper-
sensitivity.2 In our case, the acute haemolysis induced by spiramycin after complete recovery from the febrile illness suggests the drug to be the triggering oxidative agent of the haemolysis.

PSA SARMA

Department of Internal Medicine,
Jawaharlal Nehru Hospital and Research Centre,
Budhainagar,
Madhya Pradesh 490 006, India

Accepted 8 May 1997

4 Luzatto L. Glucose-6-phosphate dehydrogenase deficiency (G6PD) deficiency. In: Weatherall DJ, Leding-

The journal club

Sir,

Valentini and Daniels’ article1 was illuminating, both for those who might be interested in organising new journal clubs and those wishing to resurrect defunct ones. However, one important function of the journal club was not covered in the article, which may be of interest to those just starting out in the publications game. Sackett suggested that a journal club can be a useful forum in which to develop and enhance critical appraisal skills.2 The acquisition of critical appraisal skills should not be an end in itself, but a mean to an end. Journal clubs can serve as the springboard for the production of correspondences to editors of journals following critical appraisal of articles. Critical appraisal skills may also lead to production of views that may influence policies. Correspondence to editors, for example, in the form of critical comments on specific articles, form important and integral parts of most journals. Those that get published are usually original, contain assertions supported by data or by citation, and are written in a clear prose style.3 That generation of correspondence to editors is an important but relatively untapped function of journal clubs is highlighted by the experience of Sandifer et al.4 In their evaluation of their journal club’s activities in the first six months of its existence, the impact on commissioning policy and the publication of letters to the editor of the journal from which the articles were selected were used as outcome measures. Six out of 10 letters generated after collective appraisal were published. They identified the presence of a preconception and the relevance of the articles to everyday practice as critical factors which influence the success of a journal club. One of the cardinal rules for successful critical appraisal of articles is to avoid prejudging the articles on the basis of source, authors or preconceptions. This can be most successfully performed in the ambience of a journal club meeting because of the variation in the composition of its membership in terms of seniority and experience.

BA GIBOLADE

Department of Obstetrics & Gynaecology,
University of Manchester,
Manchester M20 3LJ, UK

Accepted 28 May 1999

Anticoagulants for venous thrombosis

Sir,

Dr Toh1 hopes that a major benefit of out-
patient treatment of deep venous thrombosis using low-molecular-weight heparin will be to reduce bed shortages. Our initial experience of home treatment for deep vein thrombosis may challenge that view.

Over the first three months of our service we anticoagulated 15 patients for deep venous thrombosis as out-patients using low-molecular-
weight heparin as initial therapy. However, we identified 30 patients from the hospital in-
patient computerised administration system that were treated for deep venous thrombosis as in-patients during this time. In fact, the mean number treated per week as in-patients in the three months after introduction of out-
patient treatment (1.2, SD 1.0), was not significantly less than the number treated per week in the previous nine months (1.1, SD 0.9). As a result the weekly total treated (in-
and out-patients) was greater in the three-
month period (2.3, SD 1.4).

If our initial observation is confirmed, it suggests that a service offering ready access to radiological investigation and avoidance of a stay in hospital increases the demand for deep vein thrombosis treatment. Some patients previously would have gone undiagnosed and untreated and been at risk of pulmonary embolism and post-phlebitic leg. Whilst out-
patient treatment is popular with many patients, it may not save beds and could increase radiology and haematology workloads.

C O L I N B ORLAND

CHRIS WILKINSON

K A T I E H O G A R T H

Hinchinbrooke Hospital
Huntingdon, PE18 8NT, UK

Accepted 25 June 1997

Oxidative haemolysis after spiramycin.

P. S. Sarma

Postgrad Med J 1997 73: 686-687
doi: 10.1136/pgmj.73.864.686-b

Updated information and services can be found at:
http://pmj.bmj.com/content/73/864/686.3.citation

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/