Carbimazole - resistant thyrotoxicosis

Sir,

We read with interest the report of two cases of thyrotoxicosis apparently resistant to high doses of carbimazole.1 In searching for the cause of a poor therapeutic response to antithyroid drugs, several possibilities must be considered. As pointed out by Cooper,2 iodine does affect the response of the thyroid to antithyroid drugs, directly by altering the intrathyroidal metabolism of the drug and indirectly by increasing the thyroid stores of propranolol, thereby delaying the response to treatment.3 Such mechanisms are involved in the resistance to antithyroid drugs of amiodarone- or iodine-induced thyrotoxicosis which may persist for months. One of these patients, an iodine-contaminated drug patient, was treated alternatively by propylthiouracil, but toxicity, weight, and orocaecal transit levels were not measured. However, the hypothesis of resistance to carbimazole could have been tested alternatively by performing a perchoral discharge test four hours after taking the daily antithyroid drug under medical supervision; a negative perchoral test indicating an inadequate blockade of iodide organisation and thus a possible carbimazole resistance, a positive test indicating the possibility of some degree of iodide organisation block, and, therefore a possible lack of compliance.2

Regardless of the problem of compliance, iodine contamination should have been ruled out by measuring urinary iodine excretion. Iodine does affect the response of the thyroid to antithyroid drugs, directly by altering the intrathyroidal metabolism of the drug and indirectly by increasing the thyroid stores of propranolol, thereby delaying the response to treatment.4 Such mechanisms are involved in the resistance to antithyroid drugs of amiodarone- or iodine-induced thyrotoxicosis which may persist for months. One of these patients, an iodine-contaminated drug patient, was treated alternatively by propylthiouracil, but toxicity, weight, and orocaecal transit levels were not measured. However, the hypothesis of resistance to carbimazole could have been tested alternatively by performing a perchoral discharge test four hours after taking the daily antithyroid drug under medical supervision; a negative perchoral test indicating an inadequate blockade of iodide organisation and thus a possible carbimazole resistance, a positive test indicating the possibility of some degree of iodide organisation block, and, therefore a possible lack of compliance.2

Regardless of the problem of compliance, iodine contamination should have been ruled out by measuring urinary iodine excretion. Iodine does affect the response of the thyroid to antithyroid drugs, directly by altering the intrathyroidal metabolism of the drug and indirectly by increasing the thyroid stores of propranolol, thereby delaying the response to treatment.4 Such mechanisms are involved in the resistance to antithyroid drugs of amiodarone- or iodine-induced thyrotoxicosis which may persist for months. One of these patients, an iodine-contaminated drug patient, was treated alternatively by propylthiouracil, but toxicity, weight, and orocaecal transit levels were not measured. However, the hypothesis of resistance to carbimazole could have been tested alternatively by performing a perchoral discharge test four hours after taking the daily antithyroid drug under medical supervision; a negative perchoral test indicating an inadequate blockade of iodide organisation and thus a possible carbimazole resistance, a positive test indicating the possibility of some degree of iodide organisation block, and, therefore a possible lack of compliance.2

Gastrointestinal disorders in Parkinson’s disease

Sir,

Gastrointestinal disorders are common in Parkinson’s disease. Although the underlying pathophysiology remains largely unknown, enteric nervous dysfunction and subsequent gastrointestinal motility disorders leading to small bowel bacterial overgrowth with malabsorption is an attractive hypothesis. Davies et al5 recently used the lactulose hydrogen breath test to study whether increased orocaecal transit time and small bowel bacterial overgrowth could explain weight loss in Parkinson’s disease. None of their 15 patients showed an early rise in breath hydrogen, which led the authors to conclude that bacterial overgrowth is an insignificant tool. We object to this conclusion for several reasons. First, the lactulose hydrogen breath test is a questionable tool to diagnose small bowel bacterial overgrowth.6 The conditio sine qua non for this test is the presence of an hydrogen-producing flora, but in 15 – 20% of tested subjects the gut flora will not meet this condition.7 Therefore, the fact that none of the patients studied by Davies et al5 had an early rise of breath hydrogen excretion does not exclude small bowel bacterial overgrowth. Furthermore, the authors cite the study by Metz et al8 as evidence that the lactulose hydrogen breath test is a reliable tool to detect bacterial overgrowth. However, this study in fact showed that the lactulose hydrogen breath test has a rather poor sensitivity (approximately 67%).9 Preferentially, the authors should have followed the recommendation of Metz et al8 to use a combination of breath tests to screen for small bowel bacterial overgrowth. Alternatively, the authors could have used the more invasive method of quantitative culture of duodenal or jejunal aspirates, which remains the most accurate diagnostic tool to demonstrate small bowel bacterial overgrowth, especially when gastrointestinal motility disorders are suspected.3

Second, one would have expected to find small bowel bacterial overgrowth since orocaecal transit time was increased in 10 of the 15 patients with Parkinson’s disease. Disrupted small bowel bacterial overgrowth is an important risk factor for small bowel bacterial overgrowth.6 Histological observations suggest that impaired gastrointestinal motility might be related to impairment of the gastrointestinal myenteric plexus, which appears to be affected in Parkinson’s disease.7 Third, Davies et al5 found high lactulose/ mannitol ratios in their patients, suggesting a reduction in the absorptive surface area of the small intestine. This might indicate the existence of small bowel bacterial overgrowth, since it is a well known cause of intestinal mucosal injury, loss of brush border enzyme activity and resultant malabsorption.6 In conclusion, the study of Davies et al5 does not exclude the possibility that small bowel bacterial overgrowth, due to disturbed small bowel motility, may at least partially explain weight loss, malabsorption and other gastrointestinal disorders in Parkinson’s disease.

VINCENT B NIEUWENWIJSU
Department of Surgery, University Hospital Utrecht, 3508 GA Utrecht, The Netherlands

Accepted 16 April 1997

Oxidative haemolysis after spiramycin

Sir,

I report a case of spiramycin-induced acute haemolysis in a glucose-6-phosphate dehydrogenase (G6PD)-deficient patient confirmed by rechallenge.

A 48-year-old-nurse was hospitalised with complaints of malaise, weakness, abdominal and lumbar pain 24 h after initiation of treatment with oral spiramycin (1 g bid) for fever and symptoms of an upper respiratory tract infection. Eight years previously she had G6PD-A-deficiency, when she suffered from several sulfonamide- and acetanilide-induced haemolytic episodes requiring blood transfusions. The laboratory data were: haemoglobin 7.7 g/dl, haematocrit 24.4%, reticulocyte count 4.5%, whole blood count 12.4 x 10^6/l, platelet count 224 x 10^9/l. The lactate dehydrogenase concentration was markedly elevated (1823 U/l; normal <300). Three days after the spiramycin therapy, she was afebrile but nauseated, icteric, and passing dark urine. The liver was 3 cm below the right costal margin and the spleen was not palpable. Serum bilirubin was 2.9 mg/dl (normal <1.0 mg/dl) with preponderant unconjugated bilirubin fraction (2.8 mg/
Gastrointestinal disorders in Parkinson's disease.

V. B. Nieuwenhuijs and B. R. Bloem

Postgrad Med J 1997 73: 686
doi: 10.1136/pgmj.73.864.686-a

Updated information and services can be found at:
http://pmj.bmj.com/content/73/864/686.2.citation

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/