Subclinical endocrinological disease
Series editor: Dr JWF Elite, Department of Internal Medicine, Sint Franciscus Gasthuis, Rotterdam, The Netherlands

Subclinical thyroid disease

Jan Willem F Elite, Aart H Mudde, Arie C Nieuwenhuijzen Kruseman

Summary
Thyroid disease can roughly be divided into functional and anatomical disorders. Subclinical disease is by definition not accompanied by symptoms or signs and usually goes unrecognized for the bearer (and the observer).

In this communication an overview will be given of existing literature and some own results concerning subclinical hypothyroidism, subclinical thyrotoxicosis and thyroid incidentaloma. Apart from definitions, data on prevalence, clinical effects, prognostic significance and the need for and response to therapy will be discussed.

Keywords: thyroid disease, subclinical hypothyroidism, subclinical hyperthyroidism, thyroid incidentaloma

Subclinical hypothyroidism

DEFINITION
Subclinical hypothyroidism is defined by the finding of a raised thyrotropin level in combination with normal thyroid hormone levels in an asymptomatic patient.1 This disorder may occur in the natural history of Hashimoto’s thyroiditis and after treatment of hyperthyroidism by either surgery or iodine-131. Many other terms have been used in the past to describe this condition, such as preclinical hypothyroidism, asymptomatic thyroiditis and decreased thyroid reserve. This reflects the controversy as to whether the disorder represents a mild form of hypothyroidism2 or is merely a biochemical abnormality.1 In order to make a decision whether or not subclinical hypothyroidism should be treated, it is indeed important to know whether the disorder has any adverse effects and/or how often overt hypothyroidism will develop. Relevant literature data are discussed below.

PREVALENCE
The prevalence of subclinical hypothyroidism varies from 5.0% to 13.2%, depending on the populations studied.3–5 Women appear to be affected more than twice as often as men. Serum thyrotropin levels are usually only slightly elevated (between 4 and 10 mU/l). With higher thyrotropin levels, the prevalence of antithyroid antibodies is more frequent; 80% of patients with thyrotropin levels above 10 mU/l and 60% with a thyrotropin level between 6 and 10 mU/l have auto-antibodies.6

PROGNOSTIC SIGNIFICANCE
Most of the follow-up studies have dealt with patients with (symptomless) autoimmune thyroiditis.6,8 Tunbridge et al6 selected 163 people from the original Wickham survey having either antithyroid antibodies and/or raised thyrotropin (6–10 mU/l) concentrations in the absence of overt or treated thyroid disease. Reassessment took place after two and four years. It appeared that the annual incidence of overt hypothyroidism was 2.5% for men with thyroid antibodies and raised thyrotropin. For women these figures were 0.4% for those with antithyroid antibodies but a normal initial thyrotropin and 5.0% for those with both antibodies and initially increased thyrotropin. None of the patients with increased thyrotropin but no antithyroid antibodies and no control subjects become hypothyroid during the follow-up period.6 Gordin and Lamberg7 have reported even higher figures in a small group of 22 patients with symptomless autoimmune thyroiditis. The annual incidence of hypothyroidism was 7.3% in those with only antithyroid antibodies and 26% in those with antibodies and increased thyrotropin levels (<1% in the general population). In contrast Engler et al8 have reported the results of a follow-up study in which mainly the degree of the thyrotropin increase determined the incidence of overt hypothyroidism. If thyrotropin were 6 mU/l, 9.7% developed hypothyroidism after five years, compared with 16.6% in subjects with a thyrotropin of 12 mU/l and 32.6% in subjects with a thyrotropin of 20 mU/l. No differences were observed with regard to the initial antibody status, the cause of subclinical hypothyroidism or clinical parameters of thyroid hormone action.8 However, in combination with thyrotropin the initial antithyroid antibody status and the thyroidal triiodothyronine reserve had predictive value.8 Rosenthal et al9 followed 26 older patients with serum thyrotropin > 4 mU/l for four years and noted that one third developed biochemical thyroid failure. All patients with initial thyrotropin levels above 20 mU/l and 80% of those with high-titer thyroid antimicrobial antibodies developed overt hypothyroidism.9

In a recent study of 30 patients, Kabadi10 reported the existence of two

Department of Internal Medicine, Sint Franciscus Gasthuis, 3045 PM Rotterdam, The Netherlands JWF Elite

Department of Internal Medicine, Slingeland Ziekenhuis, Doetinchem, The Netherlands AH Mudde

Department of Internal Medicine, Division of Endocrinology, University Hospital, Maastricht, The Netherlands AC Nieuwenhuijzen Kruseman

Accepted 16 October 1995
biochemically identical populations of patients with subclinical hypothyroidism: a) true subclinical hypothyroidism with known aetiologic factors, and b) euthyroidism with reset thyrostat — a permanent state without progression to hypothyroidism, probably secondary to subtle insults to the thyroid.

PERIPHERAL EFFECTS AND RESULTS OF TREATMENT
One important reason to screen and treat patients with subclinical hypothyroidism would be the occurrence of clinically manifest effects which improve on therapy. Over the years, many such studies have been reported. These have revealed, however, inconsistent results, especially with regard to the relation of thyrotropin and ischaemic heart disease. Also, most of these studies were uncontrolled and open with small numbers of patients. Moreover, many of the markers of peripheral thyroid hormone action are too insensitive to show changes in subtle thyroid function abnormalities, which may be an explanation for the inconsistent results. Ridgway et al reported high-normal systolic time interval measurements in patients with a mean thyrotropin of 28 mU/l (range 4.5–117), which correlated with both serum thyrotropin and L-thyroxine levels and decreased after L-thyroxine therapy. The systolic time interval was found to improve after therapy in the group of patients with the most abnormal baseline values only, whereas no correlation with pre-ejection period/left ventricular ejection time (PEP/LVET ratio) was found with thyrotropin. In patients with subclinical hypothyroidism and in control subjects the systolic time interval was similar, although a decreased left ventricular ejection fraction and other subtle effects on left ventricular function after exercise were observed in the patients with subclinical hypothyroidism. As a consequence of this controversy, contradictory advice has been given with regard to the justification of thyroid hormone therapy.

Abnormal lipid profiles in subclinical hypothyroidism resulting in an increased risk for cardiovascular disease may be another reason for intervention. Again, contradictory results have been reported. Most authors have found normal values for serum total cholesterol, high-density lipoprotein (HDL)-cholesterol and triglycerides, or even low serum cholesterol in patients with thyroid antibodies and no significant change after therapy. However, Staub et al has found a similar effect on LDL-concentration and also decreased HDL-cholesterol levels, whereas Caron et al only described decreased HDL-cholesterol levels, which increased after L-thyroxine therapy. An increased relative risk for coronary heart disease has only been shown by Tchie et al in women with thyrotropin > 4 mU/l. In this study, however, serum cholesterol levels were unexpectedly low.

Hagerty et al found an increased lifetime prevalence of major depression in women with subclinical hypothyroidism (56%) compared with euthyroid subjects (20%) (p < 0.05). Moreover, psychometric testing improved during L-thyroxine therapy in a double-blind cross-over study in 17 randomly selected women with subclinical hypothyroidism identified in a population study.

Other abnormal peripheral effects reported are: lengthening of the ankle reflex time, improving after therapy; elevated serum myoglobulin levels; increased serum prolactin levels, especially after thyrotropin-releasing hormone, normalising after therapy. Moreover, in patients with menorrhagia, infertility and peripheral arterial disease, a significant number of patients have been found with subclinical hypothyroidism. Thyroid hormone therapy in subclinical hypothyroidism may relieve menorrhagia and ovarian function disturbance. So it appears that multiple, albeit sometimes slight, peripheral effects may be observed in subclinical hypothyroidism, which often improve after thyroid hormone treatment.

SCREENING
Although the effectiveness of screening in the general adult population, both in terms of costs and health benefits, may be doubtful, it has been suggested that it is worthwhile in selected populations, such as women over 40–50 years of age.

CLINICAL CONSEQUENCES
The finding of a serum thyrotropin > 10–12 mU/l, especially if accompanied by positive antithyroid antibodies, seems to be a significant risk factor for overt disease and is in our opinion a reason for L-thyroxine treatment. For the other patients with subclinical hypothyroidism only follow-up is indicated (reset thyrostat or incipient hypothyroidism).
Subclinical thyrotoxicosis

DEFINITION
Subclinical thyrotoxicosis has been defined as an asymptomatic condition with an absent or impaired response of thyrotropin to thyrotropin-releasing hormone in the presence of normal serum levels of thyroid hormones for the general population, though supra-optimal for the individual. The condition may arise exogenously, most frequently as a consequence of L-thyroxine treatment or endogenously, mostly in multinodular goitre. The functional state of thyroid autonomy is identical with endogenous subclinical thyrotoxicosis.

Recent studies have indicated that the pituitary – thyroid setpoint is uniquely differently defined between individuals. In this concept the serum thyrotropin-level, as a ‘thermostat’, more reliably indicates the level of thyroid activity in target tissues than the level of serum thyroid hormones do, especially in the high-normal range of thyroid hormone concentrations.

DIAGNOSIS AND PREVALENCE
The wide availability of sensitive immunometric thyrotropin assays in the past decade has revealed that a substantial number of subjects on thyroid replacement therapy are substituted to a level of thyrotropin suppression. When measured with one of these so-called ‘second’ and ‘third’ generation thyrotropin assays it appears that even in the low range the basal serum thyrotropin level is highly predictive for the outcome of thyrotropin-releasing hormone testing. A suppressed basal serum thyrotropin level (<0.1 mU/l) in the presence of normal serum thyroid hormone levels is highly indicative of subclinical thyrotoxicosis, although this may be misleading in several conditions like major non-thyroidal illness, hypothalamic pituitary disease or during treatment with drugs like corticosteroids or anti-epileptics.

The prevalence of endogenous subclinical thyrotoxicosis is highly dependent on the population studied; it appears to be highest in nodular goitrous disease. There is evidence that thyroid function in multinodular goitre tends to increase in concert with an increase in nodularity with aging. Transition from euthyroidism via subclinical thyrotoxicosis to overt thyrotoxicosis in multinodular goitre has been observed. On the other hand spontaneous regression to normal thyrotropin levels in subjects with suppressed thyrotropin at initial testing has also been described. As a consequence of the natural history of multinodular goitre the prevalence of subclinical thyrotoxicosis, which may last for many years, is higher in elderly than in younger subjects with goitrous disease. The overall prevalence of subclinical thyrotoxicosis in nodular goitre is estimated at about 20%. The condition is much more frequent in women than in men.

PERIPHERAL EFFECTS
Apart from indications of increased tissue thyroid activity, expressed by elevations of serum parameters like sex hormone binding globulin most attention has been drawn to the possible effects of subclinical thyrotoxicosis on the skeletal and cardiovascular systems.

The skeletal system
An increase of bone turnover is a well recognised phenomenon of overt thyrotoxicosis. The availability of more sensitive parameters of bone turnover and more sophisticated ways to determine bone mineral density has given impetus to research on bone metabolism in subclinical thyrotoxicosis. The available data on this topic are mainly derived from cross-sectional studies and are largely confined to women. The results are not unequivocal. Several studies in L-thyroxine-treated subjects have reported a stimulated osteoblastic function as estimated by elevated serum levels of serum osteocalcin as well as an increased osteoclastic activity, represented by increased urinary excretion of pyridinium cross links. These data contrast to other studies in which no increase in bone turnover in exogenous subclinical thyrotoxicosis could be substantiated, as estimated by normal alkaline phosphatase and osteocalcin levels. Surveys on bone mineral density in subclinical thyrotoxicosis have given discrepant results as well. There are many confounding factors which may have biased these studies. For instance, the aetiology of the initial thyroid disease may be of crucial importance for the outcome of bone mineral density measurements in cross-sectional studies. Excluding subjects with previous thyrotoxicosis resulted in a loss of statistical significance of the observed decrease in bone mineral density in subclinical thyrotoxic subjects in two studies. By doing so, however, a type-2 error may have been introduced, since the remaining study population could have been too small. Inclusion of some subjects who have
Subclinical thyrotoxicosis

- decreased thyrotropin, normal L-thyroxine, triiodothyronine, no complaints;
- exogenously caused by L-thyroxine treatment
- endogenous prevalence up to 20% in multinodular goitre
- increased risk for atrial fibrillation, slightly increased bone turnover and decreased bone mineral density in postmenopausal women
- antithyroid treatment might be indicated in endogenous subclinical thyrotoxicosis associated with atrial fibrillation, but is not standard practice

had clearly elevated thyroid hormone levels of some time during treatment with L-thyroxine could have overestimated the negative impact on bone mass in some studies.42 While inclusion of subjects with non-suppressed thyrotropin levels could have underscored the effect of L-thyroxine treatment on bone mineral density in others.37,61 Calcitonin deficiency in subjects who underwent total thyroidectomy because of thyroid cancer might theoretically result in excessive bone loss apart from the effect of thyrotropin suppression.54,64 This hypothesis, however, has not been substantiated.63 Although in more recently published studies on bone mineral density in subclinical thyrotoxicosis confounding factors have been eliminated more carefully, the results are still conflicting.55,56

Menopausal status may be a critical factor in the extent to which subclinical thyrotoxicosis may be harmful to bone.55 In a recently published meta-analysis of 13 cross-sectional studies, a negative impact on bone mass of exogenous subclinical thyrotoxicosis could indeed only be substantiated in postmenopausal women.46

In endogenous subclinical thyrotoxicosis data are scanty. Mudde et al67 described a reduced forearm bone mineral density in a group of predominantly postmenopausal women with subclinical thyrotoxic multinodular goitre. In contrast, Faber and Gallée68 could not substantiate a difference in bone mass in premenopausal women, while Foldes et al69 have reported a decreased bone mineral density in postmenopausal women with solitary, autonomously functioning, thyroid nodules but not in premenopausal women.

In conclusion, the available data suggest that bone mineral density in both exogenous and endogenous subclinical thyrotoxicosis may be slightly decreased in postmenopausal women. The data in premenopausal women and in men are either too conflicting or too scanty to make definite conclusions at this stage.

The heart

Several studies have indicated decreased PEP/LVET ratios in thyrotropin suppressive treatment.46,50 An increased basal heart rhythm has been found in subjects with endogenous subclinical thyrotoxic multinodular goitre.51 It has been recognised for many years that subclinical thyrotoxicosis might be the underlying condition in atrial fibrillation.52 Conversely a prevalence of atrial fibrillation of up to 28% in endogenous subclinical hyperthyroidism has been documented.53 Echocardiographically documented left ventricular wall hypertrophy, which might be an independent predictor of cardiac morbidity, has been reported in exogenous subclinical thyrotoxicosis.53

A transverse study by Leese et al54 has shown an increased incidence of ischaemic heart disease in subjects under the age of 65 years on L-thyroxine treatment. The risk, however, was not different between those with suppressed and normal thyrotropin levels.

Clinical consequences

During life, the thyroid hormonal level within one individual is remarkably stable. There is a log-linear relationship between serum thyrotropin and thyroid hormone concentrations.56 A small increase in thyroid hormonal level may result in suppression of thyrotropin while the thyroid hormones are still within the transverse reference range.57 This situation seems to represent a very early stage of thyrotoxicosis. The clinical consequences of the subtle changes in tissue metabolism caused by this slight thyroid hormone excess, however, have yet to be established.

Although there is cumulative evidence suggesting a slight decrease in bone mineral density caused by subclinical thyrotoxicosis, especially in postmenopausal women, we are not aware of studies indicating an increased fracture incidence in affected subjects. If thyrotropin suppression is the goal of treatment, as it is in the management of differentiated thyroid cancer, adjuvant bisphosphonate treatment has been proposed.55 There is preliminary evidence that accelerated bone loss is prevented by antithyroid treatment of endogenous subclinical thyrotoxicosis.56 Considering the lack of evidence for an increased fracture risk in subclinical thyrotoxicosis, these treatment modalities should not be generally advised at this stage. An indication for antithyroid treatment of subclinical thyrotoxicosis might be represented by atrial fibrillation, but this is not standard practice at the present time.57

Thyroid incidentalomas

PREVALENCE

The prevalence of thyroid nodules and goitres is highly geographically dependent, especially in relation to iodine status. In iodine-sufficient areas, thyroid nodules may be found in 4–7% of the adult population.58,59 The main reason for
detecting thyroid nodules is the risk for thyroid cancer which has been reported to be as high as 4.1–17% in women and 8.2–13% in men with dominant thyroid nodules, versus 4.1–13% in patients with multiple nodules.\(^5\)\(^6\) In iodine-deficient areas approximately half as many patients with nodular thyroid abnormalities have carcinomas (2.7%) compared with patients from iodine-sufficient areas (5.3%).\(^6\)

It has long been known that occult thyroid nodules may be found in approximately 50%, of unselected autopsies\(^1\)\(^3\)\(^4\) and operatively removed thyroid glands from patients with hypothyroidism.\(^6\) At autopsy, occult cancer was detected in 4.2%, of nodular glands and 2.1% of clinically normal glands.\(^2\) Moreover, it appears that many of the thyroid nodules are dynamic and changeable in form and function; a decrease and even disappearance after years of follow-up is not rare.\(^6\)

ULTRASONOGRAPHY

With the advent of ultrasonography as the most sensitive method of investigation of the thyroid gland, thyroid nodules have been shown to be much more common than is evident by palpation only.\(^6\)\(^6\)\(^6\) Incidental small and asymptomatic thyroid nodules or incidentalomas were found in 13.4% of patients undergoing 'duplex' imaging of the extracranial carotid arteries,\(^4\) in 40% of patients with hyperparathyroidism (86%), detected by ultrasonography,\(^4\) and in 25% of patients who underwent abdominal ultrasonography.\(^6\)

In an unselected population from Finland\(^6\) unsuspected thyroid abnormalities were found in 27.3% of patients by ultrasonography. Of the 69 subjects with echo abnormalities, 39 had solitary nodules, 15 multiple nodules and 15 a diffuse abnormality.\(^6\) Only 5.1% of 253 subjects had abnormal palpatory findings. Most of the focal echo abnormalities were small; 71% were less than 1 cm in diameter. Fine needle aspiration was performed in 30 subjects with nodular lesions; no unequivocal malignancies were observed.\(^6\)

In a prospective study to examine the prevalence of thyroid nodules in 100 asymptomatic subjects, palpable nodules were identified in 21 subjects (nine solitary and 12 multiple).\(^6\)\(^6\) In contrast, 67 subjects had abnormal ultrasound findings (22 solitary and 45 multiple). Nodules were found more frequently in women (72%) than in men (41%). Concordance rate between ultrasonography and palpatory findings was 49%.\(^6\)

CLINICAL CONSEQUENCES

Considering the high prevalence of thyroid incidentalomas and the usually benign course, a conservative approach is advised. Neither screening, nor follow-up or any therapeutic intervention seems to be warranted in subjects with this kind of abnormality.\(^6\)\(^6\)

146

Elde, Mudde, Nieuwenhuijen Kruseman

38 Grant DJ, McMurdo ET, Mole PA, Paterson CR, Davies RR. Suppressed TSH levels secondary to thyroxine replacement therapy are not accompanied by changes in bone density. Clin Endocrinol 1993; 39: 529–33.

49 Lennon F, O'Sullivan AM, Griffin KE, Nor- thover B, Rosenfeld FD. Relevance of increased serum thyroid hormone concentrations in women with normal serum triiodothyronine values in hypothyroid patients receiving thyroxine: a case for 'tissue thyrotoxicosis'. BMJ 1984; 289: 1645–51.

Subclinical thyroid disease.

J. W. Elte, A. H. Mudde and A. C. Nieuwenhuijzen Kruseman

Postgrad Med J 1996 72: 141-146
doi: 10.1136/pgmj.72.845.141

Updated information and services can be found at:
http://pmj.bmj.com/content/72/845/141

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/