Letters to the Editor

Hyponatraemia and rhabdomyolysis in Addison's disease

Sir,
The protein manifestations of rhabdomyolysis include, not only the biochemical derangements listed in the case report by Egan et al, but also a spectrum of haematological manifestations, ranging from disseminated intravascular coagulation to non-specific pancytopenia, which can obscure recognition of this syndrome, with consequent diagnostic delay. This was exemplified by an 81-year-old woman admitted to this hospital in February 1993 with a recent fall preceded by generalised aches and pains of a few days' duration. She had clinical stigmata of congestive cardiac failure and a temperature of 38°C. She was taking bumetanide 10 mg, enalapril 5 mg, isorbidone mononitrate 60 mg, and a variable dose of cocodamol daily. Her haemoglobin (Hb) was 9.3 g/dl, mean corpuscular volume was 86.7 fl, mean corpuscular haemoglobin was 27.4 pg, white blood count (WBC) was 1600/mm³, with 84% neutrophils and 4% metamyelocytes. Platelet count was 97000/mm³. The blood film showed a moderate degree of anisocytosis, and many nonsegmented neutrophils. Although the electrocardiogram only showed non-specific ischaemia, the total creatine phosphokinase (CPK) level was 3338 with absence of the MB isoenzyme. Other biochemical investigations are shown in the table. Blood and urine cultures were sterile, and the urinary dipstick test showed no abnormality. On admission, and on follow-up, significant hepatotoxicity was ruled out by the fact that serum bilirubin and y-glutamyl transferase levels were normal. In view of pancytopenia, she was also investigated for vitamin B₁₂ and folate deficiency (see table). Her subsequent biochemical tests showed transient hypocacycaemia, and her WBC and platelet counts eventually reverted to the normal range (table). Her management included cessation of enalapril, due to renal dysfunction, and the use of sustained-release morphine for relief of disabbling muscle pains. Sixteen days later, she was afebrile, pain free, and independently mobile.

Comment
The association of disabling muscle pains, marked elevation of non-cardiac creatine phosphokinase, transient hypocacycaemia, and reversible renal failure formed the basis for the diagnosis of rhabdomyolysis, and withstanding the normal urinary dipstick tests, although confirmation by serum myoglobin assay had not been sought because the index of diagnostic suspicion was low, due to the fact that the clinical picture was dominated by the haematological derangements. The latter were initially perceived to be the result of sepsis, vitamin deficiencies and/or folate. In the event, as in the case reported by Feldman, pancytopenia appeared to be entirely consistent with rhabdomyolysis, though the haematological profile possibly being a component of multiple organ dysfunction. The spurious elevation of serum vitamin B₁₂ might have been the result of the fact that this vitamin, which is stored not only in the liver but also in skeletal muscle, had been released into the bloodstream as a result of rhabdomyolysis.

OMP JOLJOBE
Department of Medicine for the Elderly, Tameside General Hospital, Ashton-Under-Lyne, Lancashire OL6 9RW, UK

This letter was shown to the authors, who responded as follows:

Sir,
Drs Jolobe and Sen emphasise the importance of recognising occult rhabdomyolysis in clinically complex patients. In a similar fashion to our report, their case demonstrates that unless there is a high index of suspicion, particularly in elderly patients with multi-organ dysfunction, rhabdomyolysis may go unrecognised and contribute to renal impairment in the absence of urinary myoglobinuria. In our publication we have suggested a causal relationship between severe Addis-sonian hyponatraemia and the recent onset of rhabdomyolysis. In contrast their case appears to describe an association, not a causal relationship, between pancytopenia and rhabdomyolysis in an elderly patient with multiorgan dysfunction.

JE GEGAN
Lung Functions Unit, North West Lung Centre, Wythenshawe Hospital, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK

Clinical guidelines

Sir,
The recent discussion of clinical guidelines is most welcome. As guidelines are developed and introduced with increasing frequency it is important that clinicians become familiar with the issues surrounding them. I would like to make some additional points.

The article did not define guidelines. The definition of 'practice guidelines' proposed by the Institute of Medicine may reduce anxieties about them: 'systematically developed statements to assist practitioners and patients in decisions about appropriate health care for specific clinical circumstances (my italics)'. This definition emphasises the positive role guidelines may play when appropriately developed and implemented. Thus defined they are not the coercive managerial instruments some clinicians fear.

The second point concerns guideline development. Systematic reviews should be pivotal in guideline development. Guidelines based on other types of review or on consensus are prone to bias and may reflect this bias rather than the 'best' evidence. Everyone involved in guideline development or use should ensure that guidelines are not having a detrimental effect on patients, a potential danger of inappropriately developed guidelines. Guidelines based on consensus may have a further drawback. In order to reach agreement the wording of such guidelines may be so vague as to render the guideline useless: 'Consensus means that lots of people say collectively what nobody believes individually.' (Abba Eban)

My final point concerns the effectiveness of practice guidelines. Ideally the impact of a new guideline on patient outcome should be prospectively evaluated. If adverse events are infrequent, and if there is very strong evidence to support a guideline's recommendation, the process of care (the level of

Table

<table>
<thead>
<tr>
<th>Date</th>
<th>Sodium (mmol/l)</th>
<th>Potassium (mmol/l)</th>
<th>Urea (mmol/l)</th>
<th>Creatinine (mmol/l)</th>
<th>Calcium (mmol/l)</th>
<th>Albumin (g/l)</th>
<th>CPK (IU/l)</th>
<th>Hb (g/l)</th>
<th>WBC (mm³)</th>
<th>Platelets (mm³)</th>
<th>Vitamin B₁₂ (ng/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/2/93</td>
<td>138</td>
<td>4.7</td>
<td>26.0</td>
<td>225</td>
<td>127</td>
<td>1.94</td>
<td>3338</td>
<td>9.3</td>
<td>1600</td>
<td>97 000</td>
<td>2255</td>
</tr>
<tr>
<td>22/2/93</td>
<td>127</td>
<td>4.2</td>
<td>36.1</td>
<td>308</td>
<td>1.94</td>
<td>34.5</td>
<td>2888</td>
<td>10.1</td>
<td>11 400</td>
<td>417 000</td>
<td>392</td>
</tr>
<tr>
<td>2/3/93</td>
<td>133</td>
<td>5.0</td>
<td>34.5</td>
<td>320</td>
<td>2.21</td>
<td>37.9</td>
<td>129</td>
<td>10.1</td>
<td>5700</td>
<td>285 000</td>
<td>392</td>
</tr>
<tr>
<td>26/4/93</td>
<td>140</td>
<td>4.4</td>
<td>11.6</td>
<td>161</td>
<td>10.3</td>
<td>38–148</td>
<td>38–148</td>
<td>11.6</td>
<td>9000</td>
<td>240 000</td>
<td>392</td>
</tr>
<tr>
<td>18/11/94</td>
<td>144</td>
<td>4.7</td>
<td>9.6</td>
<td>116</td>
<td>11.6</td>
<td>20–148</td>
<td>38–148</td>
<td>11.6</td>
<td>9000</td>
<td>240 000</td>
<td>392</td>
</tr>
<tr>
<td>Reference</td>
<td>135–146</td>
<td>3.5–4.8</td>
<td>2.5–6.5</td>
<td>40–110</td>
<td>2.12–2.63</td>
<td>37–50</td>
<td>38–148</td>
<td>170–900</td>
<td>392</td>
<td>392</td>
<td>392</td>
</tr>
</tbody>
</table>

Hyponatraemic rhabdomyolysis in Addison's disease.

O. Jolobe and I. Sen

Postgrad Med J 1995 71: 574
doi: 10.1136/pgmj.71.839.574

Updated information and services can be found at:
http://pmj.bmj.com/content/71/839/574.1.citation

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/