Leading Article

Drug-induced rhabdomyolysis – mechanisms and management

B.D. Prendergast and C.F. George

Southampton General Hospital, Tremona Road, Southampton SO9 4XY and Clinical Pharmacology Group, Biomedical Sciences Building, Bassett Crescent East, Southampton SO9 3TU, UK

Since the original reports of patients with myoglobin-induced renal failure following crush injury during World War II, the aetiology of acute rhabdomyolysis has diversified. The causes include polymyositis, heat stroke, prolonged convulsions, marathon running, hypokalaemia and viral illness (Epstein–Barr, influenza and coxsackie viruses). Of late, drugs, including alcohol, have assumed greater importance and in published series have been implicated in up to 81% of cases. Whether all reports of drug-induced rhabdomyolysis are truly drug-related is questionable. Case reports relating to drugs taken in overdose are complicated by attendant circumstances which cause, or contribute to, acute muscle necrosis. These include seizures, hypothermia, trauma, metabolic acidosis, hypoxia and prolonged coma with immobilization, muscle compression and/or occlusion of the regional blood supply. Moreover, identification of a single cause is made difficult by the consumption of drugs in combination and with alcohol; also by the contamination of illicit substances with impurities and diluents.

Toxins themselves can have a variety of effects including vasoconstriction, involuntary muscle contraction, hyperthermia and interference with ATP metabolism, hypokalaemia and direct actions on the myocyte. The role of alcohol is of particular importance as it accounts for at least 20% of all cases of acute rhabdomyolysis. Indeed, asymptomatic rises in creatine kinase (CK) accompanied by histological evidence of myopathy have been observed in healthy volunteers consuming diets high in alcohol content. In addition, subclinical and overt rhabdomyolysis are encountered frequently in alcoholics. In the absence of compression and ischaemia due to prolonged immobilization, the suggested mechanisms include inhibition of calcium metabolism by the sarcoplasmic reticulum, disruption of muscle cell membranes, inhibition of sodium–potassium ATPase and alterations in carbohydrate metabolism. Potassium, magnesium and phosphate deficiencies also appear to be relevant. Finally, many of the clinical and pathological features of acute rhabdomyolysis are shared by the neuroleptic malignant syndrome and malignant hyperpyrexia, associated with anaesthetic agents. Diagnostic overlap, therefore, exists.

Thus, we need to distinguish between drug-induced, primary rhabdomyolysis and a secondary phenomenon whereby exposure to drugs or toxins generates circumstances which predispose to rhabdomyolysis. Table I classifies into these two categories the agents which have been linked with rhabdomyolysis. However, such distinctions are not always possible since either or both mechanisms can apply. For readers wanting more detailed discussions of the pathology involved, several review articles have been published.

The spectrum of potential complications following acute rhabdomyolysis comprises hyperkalaemia, a rapidly rising serum creatinine, hyperuricaemia, hypo- and hypercalcaemia, hyperphosphataemia, disseminated intravascular coagulation (DIC), metabolic acidosis, cardiomyopathy and respiratory failure. Also the development of compression syndromes due to localized oedema in the anterior tibial, soleal, peroneal, lateral thigh, gluteal, deltoid and volar forearm compartments with consequent peripheral neuropathy. Death is thought to arise from acute metabolic disturbances but the prognosis of renal, muscular and neurological dysfunction is good.

The aetiology of the acute renal failure following muscle necrosis is complex and described mechanisms fall into three distinct categories:

1. Impairment of renal vascular flow due to sympathetic nervous overactivity, activation of the renin–angiotensin system, altered prostaglandin synthesis, high circulating levels of antidiuretic hormone and the deposition of microthrombi.

2. Tubular obstruction by myoglobin casts or crystals of uric acid, with passive back diffusion of glomerular filtrate.

3. Direct toxicity from ferrihemate, a product of the dissociation of myoglobin at pH < 5.6. In
<table>
<thead>
<tr>
<th>Category</th>
<th>Drug(s)</th>
<th>Primary</th>
<th>Secondary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulcer healing</td>
<td>Cimetidine</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Carbenoxolone</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Laxatives</td>
<td>Any causing hypokalaemia</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Diuretics</td>
<td>Any causing hypokalaemia</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Fibrinolytic drugs</td>
<td>Streptokinase</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Alteplase</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Antifibrinolytic drugs</td>
<td>E-Aminocaproic acid</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Lipid lowering drugs</td>
<td>Fibrates</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>HMG-CoA reductase inhibitors</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Bronchodilators</td>
<td>Terbutaline</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Theophylline</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Antihistamines</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hypnotics/anxiolytics</td>
<td>Benzodiazepines</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Barbiturates</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Drugs used in psychiatry</td>
<td>Phenothiazines and butyrophenones</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Lithium</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Antidepressants</td>
<td>Tricyclic and related antidepressants</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Monoamine oxidase inhibitors</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>5HT uptake inhibitors</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Analgesics</td>
<td>Opioids</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Antiepileptics</td>
<td>Sodium valproate</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Antibacterial drugs</td>
<td>Cotrimoxazole</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Isoniazid</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Antifungal drugs</td>
<td>Amphotericin B</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Antiprotocoal drugs</td>
<td>Pentamidine</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Hypothalamic and pituitary hormones</td>
<td>Vasopressin</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Cytotoxic drugs</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Intravenous nutrition</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Vitamins</td>
<td>Retinoids</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Drugs used in gout</td>
<td>Colchicine</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Anaesthetic agents</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Emetics</td>
<td>Any causing hypokalaemia</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Other substances causing rhabdomyolysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drugs of abuse</td>
<td>Alcohol</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Amphetamines</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Caffeine</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Cocaine</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Ecstasy</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>LSD</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>'Industrial substances'</td>
<td>Dyes</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Herbicides</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Solvents</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Toxic metals/gases</td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>
DRUG-INDUCED RHABDOMYOLYSIS

animals ferrihemate infusion produces a dose-dependent deterioration in renal function with depression of renal tubular transport mechanisms.4,11 cell swelling and death.12

Successful management depends upon early diagnosis and, therefore, a low threshold of clinical suspicion (even in the absence of overt muscle pathology). Indeed, many authors advocate routine estimation of serum CK and urinary myoglobin in all instances where rhabdomyolysis is possible. Several procedures have been proposed to localize areas of muscle necrosis including ultrasound scanning, computerized tomography13 and radioisotopic techniques14 but these are neither universally applicable nor necessary.

The initial treatment is aimed at correcting acute metabolic disturbances, particularly hyperkalaemia, hyperthermia and hypovolaemia. Further muscle necrosis can be prevented by controlling seizures, restlessness and muscle contractions. Oral absorption of the causative agent can be reduced by gastric lavage and activated charcoal and, for some substances, elimination encouraged by diuresis, haemofiltration or haemodialysis. In cases of the neuroleptic malignant syndrome or malignant hyperthermia, the prompt infusion of 1 mg/kg dantrolene sodium is recommended which can be repeated, if necessary, to a total of 10 mg/kg. Bromocriptine is an alternative treatment for the neuroleptic malignant syndrome.

The mainstay for prevention and treatment of myoglobinuric acute renal failure is sodium bicarbonate. The object is to maintain an alkaline urine and prevent dissociation of myoglobin to its nephrotoxic metabolite, ferrihemate. Diuretics, notably mannitol, also have a role by promoting a diuresis, thereby diluting nephrotoxic substances, and 'flushing through' blocked renal tubules.4,12 Several protocols have been reported: Eneas \textit{et al.}15 treated 20 oliguric patients with myoglobinuria. Seventeen received 25 g mannitol and 100 mmol sodium bicarbonate in 1 litre 5% w/v dextrose administered intravenously over 4 hours and two were given intermittent intravenous mannitol and sodium bicarbonate. The last patient received only intravenous mannitol. Of the 20, nine developed a diuresis with resolution of their renal failure: the other 11 failed to respond and required dialysis. Later, Ron \textit{et al.}16 described seven crush victims who were at high risk of severe rhabdomyolysis.

Each received immediate parenteral crystalloid solutions containing sodium bicarbonate (44 mmol) in alternating 500 ml infusions. If the urine output fell to below 300 ml/h, mannitol (1 g/kg) was administered in a 20% solution. Further sodium bicarbonate was infused if the urinary pH fell below 6.5 and acetazolamide given if plasma pH approached 7.45. None of the patients developed acute renal failure.

Despite a lack of matched controls, this evidence convinced others (Curry \textit{et al.}4) to recommend a similar protocol which incorporated acetazolamide 250 mg intravenously if the arterial pH exceeded 7.45 or aciduria persisted despite alkalaeemia. However, the carbonic anhydrase inhibitor is needed rarely and is contraindicated in salicylate poisoning because of the potential for trapping salicylate in the central nervous system. Failure of any of these regimes to achieve a diuresis indicates the need for dialysis.

Knochel17 has expressed concern that the use of large quantities of sodium bicarbonate can exaggerate a tendency to hypocalcaemia and has advocated a simpler regime comprising a single dose of mannitol as 100 ml 25% solution over 15 min, together with frusenide 40–120 mg intravenously and a further dose of frusenide of 200 mg over 2 h if there is no initial response. However, proponents of bicarbonate therapy have found that complications are rare in practice if metabolic alkalosis is avoided.

Further sequelae of rhabdomyolysis require only supportive therapy. Thus, DIC should be treated with clotting factors only if there is bleeding and heparin is of no benefit. Epsilon-aminocaproic acid, a fibrinolytic inhibitor, can itself cause rhabdomyolysis and should be avoided. Hypocalcaemia will usually correct itself spontaneously and any attempt at its treatment can be complicated by rebound hypercalcemia. The late development of compartment syndromes can be prevented by careful clinical and/or intracompartmental pressure monitoring with decompressive fasciotomy when necessary.

We conclude that drug-induced rhabdomyolysis is a frequent and often unrecognized problem which occurs most commonly in drug overdosage. It should be looked for in severely poisoned patients and treated aggressively if complications are to be avoided.

References

Drug-induced rhabdomyolysis--mechanisms and management.
B. D. Prendergast and C. F. George

doi: 10.1136/pgmj.69.811.333

Updated information and services can be found at:
http://pmj.bmj.com/content/69/811/333.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/