Efficacy of enalapril in essential hypertension and its comparison with atenolol

M. El Mangouch, N.K. Singh, S. Kumar, A. Basha, B.S. Gupta, Y.K. Bolya and A. Gamati

Departments of Medicine and Community Medicine, Hawari Hospital, Arab Medical University, Benghazi, Libya.

Introduction

Enalapril is a relatively new, long-acting, non-sulphhydryl angiotensin converting enzyme (ACE) inhibitor with a few side effects. In placebo-controlled trials, it has been reported to be effective in controlling blood pressure (BP) in about 50 to 75% patients with mild to moderate hypertension. However, most of the clinical trials have been done with a fixed dose of 20 mg or 40 mg per day. Blood pressure response with increasing doses of enalapril has been correlated by only a few workers, and its optimal dose has not been elucidated. Moreover, only a few studies have been done to evaluate its therapeutic efficacy as a monotherapeutic agent in patients with severe hypertension.

Comparative studies on the antihypertensive effect of enalapril with beta blockers propranolol, metoprolol and atenolol have shown these drugs to be of almost similar efficacy. However, the place of enalapril as a 'first-step' antihypertensive drug has not yet been clearly established. We selected atenolol for comparison as it is a conventional first-line antihypertensive drug and because of the limited reports available on the comparative efficacy of the two drugs.

The objective of the present study was two fold: (i) to evaluate the antihypertensive efficacy and tolerance of increasing doses of enalapril in patients with essential hypertension of severity ranging from mild to severe, and to find out its optimal therapeutic dose; and (ii) to compare the efficacy and safety of enalapril with that of atenolol in order to evaluate the place of enalapril as a ‘first-step’ drug in hypertensive patients.

Materials and methods

The patients

Sixty seven patients with essential hypertension completed the trial. All patients gave informed consent and were randomly selected from the hypertension clinic. Patients with secondary or malignant hypertension, pregnancy, heart failure, heart block, diabetes mellitus, bronchial asthma or peripheral vascular disease and significant renal or hepatic dysfunction were not included in the study. All patients underwent a complete physical examination, chest X-ray, electrocardiogram, blood biochemistry and urine analysis. Depending on diastolic blood pressure (DBP), patients were classified into mild (90–104 mmHg) – 25 cases, moderate (105–120 mmHg) – 30 cases, and severe hypertension (>120 mmHg) – 12 cases. There
were 33 males and 34 females, aged 28 to 65 years (48.30 ± 2.34). Average duration of hypertension was 5.7 ± 1.1 years with a range of 1 month to 18 years.

Study design

This was a placebo run-in, single-blind, cross-over study for 8 to 10 weeks with each of enalapril and atenolol. After withdrawal of their previous antihypertensive treatment, all patients received placebo (1 tablet daily) for 4 weeks as a 'washout' period. Patients were then randomly assigned to once daily treatment with either enalapril or atenolol. Starting dose of enalapril was 10 mg/day for mild and 20 mg/day for moderate and severe hypertension. Depending on therapeutic response, it was increased at 2-weekly intervals to 20 to 40 to 60 to 80 mg/day unless diastolic BP was reduced below 90 mmHg or the patient developed side effects of the drug. Starting dose of atenolol was 50 mg/day for mild hypertension which was increased to 100 mg/day after 4 weeks if required. Patients with moderate and severe hypertension received a fixed dose of 100 mg/day for 8 weeks or less if diastolic BP was 'normalized'. While crossing-over to the other drug, all patients received an intervening placebo for 4 weeks as washout period. The trial was considered to be complete if diastolic BP was normalized (< 90 mmHg) or after the patient had received the maximum dose of enalapril (80 mg/day) and atenolol (100 mg/day), each for at least 4 weeks.

All patients attended the clinic at 2-weekly intervals, and earlier if required. At each visit blood pressure was measured and side effects objectively enquired. All blood pressure measurements were made uniformly after rest for at least 10 minutes, in the sitting position, in the right arm, using a random zero mercury sphygmomanometer almost at the same time (between 16.00 and 18.00 h) on each visit. The first and fifth Korotkoff sounds were used to determine systolic and diastolic BP respectively. 'Response' to therapy refers to a reduction in diastolic BP of > 10 mmHg or to < 90 mmHg, and 'normotension' or 'normalization' of BP refers to diastolic BP < 90 mmHg.

Statistical analysis

Mean BP was calculated as diastolic BP plus one third of systolic minus diastolic BP. All data are shown as mean ± standard error of mean (s.e.m.) values. Statistical analysis to compare the antihypertensive effect of enalapril and atenolol included 't' test applied to paired comparison. A P value of < 0.05 was considered as significant and P value of < 0.01 as highly significant.

The power of the test for the mild, moderate and severe groups was SBP 0.5–0.6, 0.6–0.7 and 0.3–0.4, DBP 0.1–0, < 0.1, 0.3–0.4 and 0.1–0.2, and MBP 0.8–0.9, 0.3–0.4, 0.3–0.4 respectively.

Results

Relation to severity of hypertension

Response to enalapril treatment was noticed in all patients with mild, 20(66.6%) with moderate and 7(58.3%) patients with severe hypertension; whereas 'normalization' of BP was achieved in 22(88%) with mild, 15(50%) with moderate and 3(25%) patients with severe hypertension. The dose of enalapril required to 'normalize' the BP was 10 mg in 5, 20 mg in 22, 40 mg in 17 and 60 mg in 6 patients. Increasing the dose further to 80 mg/day, however, did not produce any additional beneficial effect.

Response to atenolol treatment occurred in all patients with mild, 26(86.6%) with moderate and 7(58.3%) patients with severe hypertension, blood pressure was 'normalized' in 23(92%), 13(43.3%) and 2(16.6%) patients respectively. The dose of atenolol required to 'normalize' BP was 50 mg in 12 and 100 mg in 26 patients.

Effect on entire patient group

There was a significant reduction in mean ± s.e.m. values of systolic, diastolic and mean BP in all grades of hypertension with both drugs as compared to placebo (Table I). The magnitude of reduction in BP was slightly greater with enalapril (13 to 16%) as compared to atenolol (7 to 15%). Comparison of their antihypertensive effect revealed no significant difference in diastolic BP but reduction in systolic BP was significantly greater with enalapril than atenolol in both mild and moderate hypertension groups (P < 0.01 in each group) as shown in Figures 1 and 2. In patients with severe hypertension, the fall in BP was relatively more with enalapril than atenolol but the difference was statistically insignificant.

The pulse rate for the entire group of 67 patients before and after enalapril treatment was 75.5 ± 1.6 and 76.4 ± 1.7 (P = not significant), whereas with atenolol treatment it decreased from 76.2 ± 1.8 to 66.8 ± 1.5 (P < 0.001).

Side effects

On enalapril treatment 2 patients each had headache and somnolence and 1 had dizziness whereas with atenolol there was dizziness in 2 and heart failure in 1 patient.
The study was properly designed to minimize the influence of bias or natural variability of results by wash-out periods, taking BP measurements in uniform situations using a random zero mercury sphygmomanometer and adopting clearly defined criteria. A placebo run-in washout period of more than 4 weeks was considered undesirable because
of the attendant risks of uncontrolled hypertension.

Our results of enalapril therapy in patients with mild to moderate hypertension are comparable to those reported earlier.\(^1\)\(^-\)\(^5\) Enalapril alone failed to control BP in a majority of the patients with severe hypertension. The optimal dose of enalapril for most of the patients, who achieved normalization of BP, was 20 mg to 40 mg/day. A smaller dose (10 mg/day) was effective in only a few patients with mild hypertension, and increasing the dose to 60 mg/day benefited only a few patients. Only a few previous studies\(^6\)\(^-\)\(^7\) have compared the BP response with different doses of enalapril administered.

Comparative studies of enalapril with beta blockers in patients with mild to moderate hypertension have revealed it to be as effective as propranolol,\(^9\)\(^-\)\(^10\) metoprolol\(^11\) and atenolol.\(^8\)\(^-\)\(^12\) In the present study, comparison of enalapril and atenolol revealed almost parallel efficacy of the 2 drugs in all grades of hypertension, although the per cent reduction in BP with enalapril was superior to atenolol. Moreover, reduction in systolic BP was more marked with enalapril than atenolol in patients with both mild and moderate hypertension (\(P<0.01\) in each group). Similar findings have been reported by other workers.\(^8\)\(^-\)\(^12\)

The greater reduction in systolic BP with enalapril compared with atenolol appears clinically important as there is now greater evidence to suggest that increased systolic rather than diastolic BP is predictor of cardiovascular morbidity.\(^14\)\(^,\)\(^15\) Moreover, it may prove to be a useful drug for the treatment of isolated systolic hypertension. Further study is required in this direction.

Side effects of enalapril were mild and trivial in the present study, and were unrelated to its dose. Its reported side effects were 0.5 to 5% and included headache, dizziness, fatigue, diarrhoea, skin rash, nausea, taste disturbance and, rarely, symptomatic hypotension.\(^1\)\(^,\)\(^2\)\(^,\)\(^6\)

In conclusion, enalapril was found to possess potent antihypertensive effect. It controlled BP in the majority of patients with mild to moderate hypertension at a dose of 20 to 40 mg/day. It was well tolerated, and has a parallel or slightly superior antihypertensive effect as compared to atenolol. Moreover, it has no limitations to its use with beta blockers as observed in conditions such as heart failure, heart block, bronchial asthma, diabetes mellitus and peripheral vascular disease. Enalapril is, therefore, clearly an effective and safe alternative first-line drug in the ‘stepped-care’ approach to the treatment of hypertension.

Acknowledgements

Merck Sharp & Dohme (MSD) kindly supplied enalapril. We thank Miss Z.D. Vesna for typing the paper.

References

Efficacy of enalapril in essential hypertension and its comparison with atenolol.

M. el Mangoush, N. K. Singh, S. Kumar, A. Basha, B. S. Gupta, Y. K. Bolya and A. Gamati

Postgrad Med J 1990 66: 446-449
doi: 10.1136/pgmj.66.776.446

Updated information and services can be found at:
http://pmj.bmj.com/content/66/776/446

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/