Crohn’s disease in monozygotic twins

D.S. Rampton¹ and R.B. Stott²

¹Newham General Hospital, Glen Road, London E13 8SL and ²Lewisham Hospital, London, UK.

Summary: A pair of monozygotic twins with Crohn’s disease is described. Both have ileocaecal disease and suffered their first symptoms after living apart for 6 years. The pathogenic role of hereditary and environmental factors is discussed in the light of this and previous reports of twins with Crohn’s disease.

Introduction

Seventeen pairs of identical twins concordant for Crohn’s disease have been recorded (Table 1). We describe a further set of affected twins unusual in that the disease developed simultaneously and at the same site in each patient at a time when they had been living in different environments for 6 years. As in a minority of previous reports (Crismer et al., 1963; Goldstein et al., 1976; Morichau-Beauchant et al., 1977; Klein et al., 1980; Gonzalez et al., 1983), monozygosity in our patients was investigated by histocompatibility typing and blood group analysis.

Case histories

The twins were delivered 6 weeks prematurely in 1956; information about the placenta is unavailable. At the age of 2 years, on account of their mother’s mental illness, they were transferred from their parental home into the same residential accommodation. They left this home to live apart in 1978. There was no other family history of inflammatory bowel disease.

Twin A

In early 1984 she had several weeks of abdominal pain, nausea and watery diarrhoea. The symptoms recurred in September and persisted until her referral to hospital in November 1984. Examination, including sigmoidoscopy, was normal. Her haemoglobin concentration was 10.7 g/l, and erythrocyte sedimentation rate (ESR) 47 mm in the first hour. Small bowel enema and barium enema showed narrowing, spasm and abnormal sinus tracks in the terminal ileum and caecum with matted loops of adjacent bowel. Colonoscopy, performed after she had started on steroid therapy, showed mucosal oedema, cobblestoning and aphthous ulceration around the ileocaecal valve with the opening of a sinus visible just proximal to it; the remainder of the large bowel was normal. Rectal biopsy was normal but biopsies from the caecum showed patchy active inflammation with foci of ulceration; no granulomata were seen. Treatment with prednisolone, iron, folic acid and vitamin B₁₂ injections produced rapid symptomatic and haematological improvement, and at the time of writing she remains in remission.

Twin B

In January 1984 she developed erythema nodosum and reported diarrhoea for several weeks. She was passing loose motions two or three times daily, usually provoked by specific foods such as onions, without blood or mucus. There was no abdominal pain but she had lost weight. Examination was normal. Her ESR was 54 mm in the first hour but there were no other haematological or biochemical abnormalities. Barium studies showed typical Crohn’s disease of the terminal ileum with mucosal thickening and ulceration. She made a partial response to a short course of steroids but because of persistent symptoms had a colonoscopy in July 1985; this showed involvement of the caecum and terminal ileum with cobblestoning and serpiginous ulcers. Biopsy showed mucosal ulceration and inflammation and although no granuloma was seen the histology was consistent with the diagnosis of Crohn’s disease. She was therefore recommenced on prednisolone 20 mg/day. Her symptoms settled, her ESR fell to 13 mm in the first hour and she regained weight. She is presently well on reducing doses of steroids.

Monozygosity

The twins are of similar appearance. The histocompatibility type of each, determined by the microlym-
phocytotoxic technique, was A2, A3, B7, B15 (62), BW6, CW3, CW7, DR7, possible DRW8. Their blood groups were also identical: B, R; (CDe/dé), MNSs, P1 positive, Lu\(^a\)^{+}, Kell negative (kk), Kp\(^a\) negative, Le\(^a\)^{−,+}, Fy\(^a\)^{+}. Jones et al., 1976; Goldstein et al., 1984).

Discussion

Although in neither patient were granulomata found on microscopic examination of biopsy specimens, there seems little doubt from the clinical, radiological and colonoscopic findings, as well as their response to treatment, that this is the eighteenth pair of monozygotic twins with Crohn's disease, and only the fifth reported apart at the onset of symptoms, to be reported (Table I).

Calculations based on the prevalence of Crohn's disease in the general population (about 50/100,000) (Miller et al., 1974) and of monozygotic twins (360/100,000) indicate that there are far more recorded instances of identical twins concordant for Crohn's than can be explained by chance alone (Goldstein et al., 1981; Morichau-Beauchant et al., 1977; Carlisle & Hersh, 1978; Almy & Sherlock, 1966). In addition, published reports suggest that Crohn's disease occurs more commonly in monozygotic twins than does ulcerative colitis, which has a prevalence of about 80/100,000 (Evans & Acheson, 1965) but for which only 5 concordant pairs of identical twins have been recorded (Mayberry et al., 1982) (\(\chi^2\) test, \(P < 0.001\)).

Crohn's disease occurring in monozygotic twins living together sheds little light on the relative importance of inherited and environmental factors in its pathogenesis. Our twins resembled two other pairs (Niederle, 1961; Morichau-Beauchant et al., 1977) in having the same region of gut affected and a simultaneous onset of symptoms after living for some years in separate environments. Either genetic predisposition or environmental influences operating prior to their separation could theoretically explain these observations; exposure to the same environmental factor after the twins' separation is much less likely. However, no single inherited or environmental factor can be invoked to account for these cases as well as those concordant identical twins living in the same environment but with different distributions of disease (Goldstein et al., 1976; Klein et al., 1980; Gonzalez et al., 1983; Weterman & Peña, 1984) or times of onset differing by up to 6 years (Freysz et al., 1958; Crismer et al., 1963; Goldstein et al., 1976; Gonzalez et al., 1983; Weterman & Peña, 1984): neither can cohabiting

Table I

<table>
<thead>
<tr>
<th>Reference</th>
<th>HLA/blood group analysis</th>
<th>Age at onset (years)</th>
<th>Site in each twin</th>
<th>Environment at onset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edwards (1954)</td>
<td>–</td>
<td>27/30</td>
<td>Ileum/ileum</td>
<td>Unstated</td>
</tr>
<tr>
<td>Freysz et al. (1958)</td>
<td>–</td>
<td>59/63</td>
<td>Ileum, colon/ileum, colon</td>
<td>Same</td>
</tr>
<tr>
<td>Niederle (1961)</td>
<td>–</td>
<td>50/50</td>
<td>Ileum/ileum</td>
<td>Different (30 years)</td>
</tr>
<tr>
<td>Crismer et al. (1963)</td>
<td>Yes</td>
<td>18/23</td>
<td>Ileum, colon/ileum, colon</td>
<td>Same</td>
</tr>
<tr>
<td>Sherlock et al. (1963)</td>
<td>–</td>
<td>44/44</td>
<td>Ileum/ileum</td>
<td>Unstated</td>
</tr>
<tr>
<td>Hislop & Grant (1969)</td>
<td>–</td>
<td>27/28</td>
<td>Ileum/ileum</td>
<td>Unstated</td>
</tr>
<tr>
<td>Milton-Thompson & Lennard-Jones (1971)</td>
<td>–</td>
<td>Unstated</td>
<td>Colon/colon</td>
<td>Unstated</td>
</tr>
<tr>
<td>Berg & Dencker (1972)</td>
<td></td>
<td>21/21</td>
<td>Ileum, colon/ileum, colon</td>
<td>Same</td>
</tr>
<tr>
<td>Goldstein et al. (1976)</td>
<td>Yes</td>
<td>13/17</td>
<td>Ileum, jejunum/ileum, jejunum, stomach</td>
<td>Same</td>
</tr>
<tr>
<td>Morichau-Beauchant et al. (1977)</td>
<td>Yes</td>
<td>32/32</td>
<td>Ileum/ileum</td>
<td>Different (10 years)</td>
</tr>
<tr>
<td>Carlisle & Hersh (1978)</td>
<td>–</td>
<td>Unstated</td>
<td>Unstated</td>
<td>Unstated</td>
</tr>
<tr>
<td>Hellers (1979)</td>
<td>–</td>
<td>Unstated</td>
<td>Unstated</td>
<td>Different</td>
</tr>
<tr>
<td>Klein et al. (1980)</td>
<td>Yes</td>
<td>14/14</td>
<td>Ileum, colon, oesophagus/ileum, colon, mouth</td>
<td>Same</td>
</tr>
<tr>
<td>Gonzalez et al. (1983)</td>
<td>Yes</td>
<td>11/13</td>
<td>Ileum, colon/ileum, colon, oesophagus</td>
<td>Same</td>
</tr>
<tr>
<td>Present report</td>
<td>Yes</td>
<td>27/27</td>
<td>Ileum, caecum/ileum, caecum</td>
<td>Different (6 years)</td>
</tr>
</tbody>
</table>
monzygotic twins discordant for Crohn’s (Weterman & Peña, 1984) be easily explained. Other approaches are required to unravel the complex inter-relationships between nature and nurture in the pathogenesis of Crohn’s disease.

Acknowledgement

We thank the North East Thames Regional Blood Transfusion Service, Brentwood, Essex, for performing the HLA and blood group analysis.

References

Crohn's disease in monozygotic twins.

D. S. Rampton and R. B. Stott

Postgrad Med J 1986 62: 1047-1049
doi: 10.1136/pgmj.62.733.1047

Updated information and services can be found at:
http://pmj.bmj.com/content/62/733/1047

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/