Management of ventricular arrhythmias associated with mitral valve prolapse by combined alpha and beta blockade

Ghazwan S. Butrous, Milton B. Maltz, James O’Keefe, Seamus O. Banim and A. John Camm

Department of Cardiology, St Bartholomew’s Hospital, London, EC1A 7BE, UK.

Summary: Ventricular arrhythmias are common in patients with mitral valve prolapse. Ten patients with echocardiographically confirmed mitral valve prolapse and documented ventricular arrhythmias were included in this study. The aim was to assess the value of combined alpha- and beta-blockade (labetalol) compared with beta-blockade alone (propranolol) in the management of ventricular arrhythmias in these patients. The study was performed using physiological stress, such as the Valsalva manoeuvre, isometric exercise and treadmill exercise, to initiate ventricular arrhythmias before and after intravenous propranolol or labetalol and to document arrhythmias during 24 hour electrocardiography before and after oral medication. Labetalol and propranolol decreased the heart rate and blood pressure response to these manoeuvres to a similar extent but labetalol was more effective in the control of the ventricular arrhythmias. These findings suggest that alpha adrenergic receptors may play a role in the pathogenesis of the ventricular arrhythmias in mitral valve prolapse syndrome and that labetalol offers an alternative treatment for the management of this condition.

Introduction

Mitral valve prolapse is associated with a variety of arrhythmias (DeMaria et al., 1976; Gooch et al., 1972; Sloman et al., 1972; Winkle et al., 1975), particularly ventricular arrhythmias (Campbell et al., 1976; Savage et al., 1983). The pathogenesis of these arrhythmias is not known but may be associated with a cardiomyopathy reported in some patients with this syndrome (Mason et al., 1978), due to stretching of the papillary muscle (Cobbs & King, 1977) or to dysautonomia (Coghlan et al., 1979). Gaffney et al. (1979, 1983) found that dysautonomia, manifested by decreased parasympathetic tone and increased alpha-but normal beta-sympathetic responses, is commonly found in patients with mitral valve prolapse. This raises the question of whether alpha-stimulation contributes to the induction or maintenance of the ventricular arrhythmias in mitral valve prolapse patients. This hypothesis is based on the recent findings on the role of alpha-receptors in the pathogenesis of ventricular arrhythmias related to myocardial ischaemia and reperfusion and the beneficial effect of alpha-blockers in the management of these arrhythmias (Sheridan et al., 1980; Stewart et al., 1980). Although beta-blockers are useful for the treatment of ventricular arrhythmias in symptomatic patients with mitral valve prolapse (Winkle et al., 1977) they are not always successful and often other antarrhythmic drugs may be needed (Barlow & Pocock, 1979). In this study we assessed the use of combined alpha- and beta-blockade, in the form of labetalol (Richards et al., 1976) and compared this with propranolol in the treatment of ventricular arrhythmias occurring spontaneously and induced by physiological manoeuvres in patients with mitral valve prolapse syndrome.

Patients and methods

Patients

Ten patients (8 females) with echocardiographically (both M-mode and 2-D) confirmed mitral valve prolapse were included in the study. Their ages ranged between 24–71 (mean 48 ± 15) years. Inclusion criteria included a history of palpitations and exercise induced ventricular arrhythmias. Two patients presented with ventricular tachycardia. Ischaemic heart disease was largely excluded by persistently normal ventricular repolarization in response to formal stress testing (Bruce protocol) and no history of angina. The aims and methods of the study were fully explained to

Correspondence: G.S. Butrous, M.B., Ch.B.
Accepted: 25 September 1985

© The Fellowship of Postgraduate Medicine, 1986
Table I Valsalva manoeuvre measurements

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Propranolol</th>
<th>Labetalol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tachycardia ratio</td>
<td>0.67 ± 0.12</td>
<td>0.76* ± 0.12*</td>
<td>0.78 ± 0.1**</td>
</tr>
<tr>
<td>Valsalva ratio</td>
<td>1.69 ± 0.35</td>
<td>1.39 ± 0.3**</td>
<td>1.34 ± 0.2*</td>
</tr>
<tr>
<td>No. of patients with VPCs in phase 4</td>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Average VPCs (during first 30 s of phase 4)</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

*P < 0.01 compared with control; **P < 0.001 compared with control.

Analysis of data

RR intervals and blood pressures were assessed during all stages of the physiological manoeuvres mentioned above. Valsalva manoeuvre measurements, mainly tachycardia ratio (the mean RR interval during phase 2 divided by the mean RR interval during control) and Valsalva ratio (the longest RR interval during phase 4 divided by the mean RR interval during phase 2) (Baldwa & Ewing, 1976) were assessed. The double product of heart rate and systolic blood pressure divided by 100 was used in the assessment of the response to isometric and treadmill exercise tests. The number of VPCs was counted during all stages of these physiological manoeuvres.

The 24 hour tapes were analysed and printouts of the total VPC counts in each hour were obtained. The incidence of ventricular tachycardia (3 or more consecutive ventricular beats faster than 120 beats/minute) was noted.

Mean ± standard deviation and paired Student’s t test were used for statistical inference.

Results

Valsalva manoeuvre measurements

Both labetalol and propranolol significantly increased the tachycardia ratio and decreased the Valsalva ratio (Table I). There were no significant differences in both ratios between labetalol and propranolol. VPCs occurred during phase 4 of the manoeuvre in seven

Table II Heart rate/blood pressure double product during isometric exercise parameters

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Propranolol</th>
<th>Labetalol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting</td>
<td>86 ± 17</td>
<td>68 ± 11**</td>
<td>79 ± 24</td>
</tr>
<tr>
<td>3 minute exercise</td>
<td>132 ± 27</td>
<td>101 ± 11*</td>
<td>97 ± 18**</td>
</tr>
<tr>
<td>Post-exercise</td>
<td>86 ± 12</td>
<td>71 ± 12</td>
<td>75 ± 16*</td>
</tr>
</tbody>
</table>

*P < 0.01 compared with control; **P < 0.001 compared with control.
patients (average of five in the first 30 seconds of phase 4) during the control study. Intravenous propranolol abolished this arrhythmia in four patients and labetalol in five patients (Table I).

Isometric exercise

There was a significant reduction of the double product in response to isometric exercise after labetalol \(P < 0.001 \) and after propranolol \(P < 0.01 \) (Table II). There was no significant difference between the results after propranolol and after labetalol. VPCs were produced in two patients during the control study but in only one after intravenous labetalol or propranolol.

Treadmill exercise

There was a significant decrease in the double product after labetalol or propranolol (Table III). Exercise duration was not decreased by these drugs.

In nine patients an average of 36 VPCs/minute were initiated during stage 1 and stage 2, but in all patients the arrhythmias disappeared during stage 3. These were abolished in four patients after propranolol and in all patients after labetalol. In the first 6 minutes after exercise an average of 24 VPCs/minute were noticed in seven patients in the control study and in four patients after propranolol and three patients after labetalol (see Table IV).

The 24 hour electrocardiogram

There was a significant decrease in the number of VPCs with both oral propranolol \(P < 0.05 \) and labetalol \(P < 0.05 \). This was most obvious in patients with initial VPC counts of more than 50/hour (Table V). In two patients with ventricular tachycardia propranolol did not suppress the arrhythmias while labetalol did. These two patients were followed up for 2 and 3 years on labetalol with no recurrence. In one patient, subsequent withdrawal of labetalol led to reappearance of ventricular tachycardia.

Discussion

There is considerable variation in the definition of mitral valve prolapse syndrome. The original clinical description, based on the auscultatory findings of an apical late systolic murmur and non-ejection systolic click (Barlow *et al.*, 1963) is heavily relied on. Recently M-mode and 2-D echocardiography have been used to diagnose mitral valve prolapse. These techniques have improved the diagnostic accuracy in this condition as demonstrated by the Framingham study in which many subjects who had echocardiographic evidence of mitral valve prolapse had no specific auscultatory findings (Savage *et al.*, 1983). In this study only patients with clinically suspected mitral valve prolapse which was subsequently confirmed by both M-mode and 2-D echocardiography were included. The patients also complained of palpitations and had documented evidence of ventricular arrhythmias. These specific selection criteria were adopted in order to test the relevance of increased alpha activity as proposed by Gaffney and his coworkers (1979, 1983) to the ventricular arrhythmias occurring in this syn-

Table III Heart rate/blood pressure double product during treadmill exercise

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Propranolol</th>
<th>Labetalol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting</td>
<td>95 ± 17</td>
<td>81 ± 11*</td>
<td>75 ± 14*</td>
</tr>
<tr>
<td>Stage 1</td>
<td>180 ± 40</td>
<td>102 ± 20**</td>
<td>97 ± 14**</td>
</tr>
<tr>
<td>Stage 2</td>
<td>227 ± 47</td>
<td>142 ± 25**</td>
<td>137 ± 18**</td>
</tr>
<tr>
<td>Stage 3</td>
<td>280 ± 90</td>
<td>169 ± 10**</td>
<td>181 ± 25**</td>
</tr>
</tbody>
</table>

*P < 0.02 compared with control; **P < 0.001 compared with control.

Table IV Ventricular arrhythmias during and after treadmill exercise

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Propranolol</th>
<th>Labetalol</th>
</tr>
</thead>
<tbody>
<tr>
<td>During exercise</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of patients</td>
<td>9</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>VPCs/minute</td>
<td>36</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>6 minutes after exercise</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of patients</td>
<td>7</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>VPCs/minute</td>
<td>24</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

(P 4)
Table V The average number of ventricular premature beats/hour during 24 hour electrocardiographic recording

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Control</th>
<th>Propranolol</th>
<th>Labetalol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>653</td>
<td>198</td>
<td>113</td>
</tr>
<tr>
<td>2</td>
<td>685</td>
<td>105</td>
<td>39</td>
</tr>
<tr>
<td>3</td>
<td>700</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>181</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>139</td>
<td>11</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>81</td>
<td>43</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>700</td>
<td>20</td>
<td>450</td>
</tr>
</tbody>
</table>

*Oral propranolol or labetalol could not be prescribed because of a history of severe bradycardia.

The role of alpha-receptors on the electrophysiology of the heart is still not clear. There is an increase in alpha responses in mitral valve prolapse patients (Gaffney et al., 1979) and this may play a similar role in the genesis of ventricular arrhythmias as does the increased alpha-activity associated with acute ischaemia or reperfusion (Corr et al., 1981).

Both propranolol and labetalol significantly decreased the incidence of arrhythmias in this group of patients; labetalol appeared to be more effective. Whether this is due to additional alpha effect could not be established from this study. Antiarrhythmic effects of labetalol (Mazzola et al., 1981) may be due to beta-blockade, alpha-blockade or membrane stabilization (Dukes & Vaughan Williams, 1984). Labetalol changed Valsalva manoeuvre, isometric and treadmill exercise measurements similarly to propranolol, suggesting that both drugs produced a similar degree of beta-blockade.

Patients with mitral valve prolapse who have asymptomatic VPCs and no inducible ventricular tachycardia during electrophysiological study may have a benign prognosis without treatment (Morady et al., 1984). Life threatening arrhythmias, however, have been reported and may cause sudden death (Jeresaty, 1976). We have shown that labetalol may be a suitable alternative to isolated beta-blockade which is worth considering in the management of this condition.

References

factor in the abnormal ventriculogram and peculiar hemodynamics associated with mitral valve prolapse. _American Heart Journal_, 93, 741

Management of ventricular arrhythmias associated with mitral valve prolapse by combined alpha and beta blockade.

G. S. Butrous, M. B. Maltz, J. O'Keefe, S. O. Banim and A. J. Camm

Postgrad Med J 1986 62: 259-263
doi: 10.1136/pgmj.62.726.259

Updated information and services can be found at:
http://pmj.bmj.com/content/62/726/259

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/