Clinical Reports

Immunoglobulin deficiency responding to vitamin B₁₂ in two elderly patients with megaloblastic anaemia

Kalman Kafetz

Department of Geriatric Medicine, Whipps Cross Hospital, London E11 1NR, UK.

Summary: Two elderly patients with vitamin B₁₂ deficiency were found to have low immunoglobulin levels. These returned to normal on treatment with vitamin B₁₂.

Introduction

In younger patients vitamin B₁₂ deficiency may be associated with immunoglobulin deficiency, but the immunoglobulins do not rise when vitamin B₁₂ is given (Conn et al., 1968). In older patients with vitamin B₁₂ deficiency serum immunoglobulins are usually within the normal range (Odgers & Wangel, 1968) and do not change with treatment (Hippe & Jensen, 1969; Selroos & von Knorring, 1973). This report describes two elderly patients with immunoglobulin deficiency associated with megaloblastic anaemia due to vitamin B₁₂ deficiency, whose immunoglobulins rose to normal when vitamin B₁₂ was administered.

Case reports

Case 1

A 79 year old man presented with a 4 year history of weight loss (17 kg) and increasing oedema and lethargy. Investigations showed a macrocytic and megaloblastic anaemia due to vitamin B₁₂ deficiency. Haemoglobin was 7.2 g/dl, mean corpuscular volume (MCV) was 128 fl, serum vitamin B₁₂ was 20 ng/l (normal range 160–975 ng/l) and bone marrow examination showed megaloblastic changes. This was caused by malabsorption due to bacterial contamination of jejunal diverticula, as shown on barium studies, a raised serum folate (36.0 μg/l, normal range 6–21) and no absorption of radio-labelled vitamin B₁₂ without and with intrinsic factor (Chanarin, 1979). A ¹⁴C glycocholate breath test was grossly abnormal. Both the vitamin B₁₂ absorption and the glycocholate breath test improved towards normal after treatment with erythromycin for 2 months.

Before B₁₂ was given, serum protein levels were low. Total protein was 39 g/l, albumin was 23 g/l; IgG was 5.8 g/l (normal range 5–16 g/l), IgA was 0.75 g/l (1.25–4.25) and IgM was 0.30 g/l (0.5–1.8). Chromium 51 studies showed no evidence of protein-losing enteropathy. After vitamin B₁₂ therapy, and before erythromycin, IgG had risen to 7.2 g/l, IgA to 4.25 g/l and IgM to 0.95 g/l. Concurrently, haemoglobin rose to 11.4 g/dl with an MCV of 92 fl. Albumin was unchanged and only rose after antibiotic therapy. Therefore the rise in immunoglobulins was related to the vitamin B₁₂ therapy, and not to alteration of the bowel flora by antibiotics.

Case 2

An 81 year old woman presented with a 6 week history of vomiting and diarrhoea. Investigations showed a macrocytic and megaloblastic anaemia due to vitamin B₁₂ deficiency. Haemoglobin was 6.0 g/dl, MCV was 108 fl, serum vitamin B₁₂ was 60 ng/l, serum folate was 19.0 μg/l. Examination of the bone marrow showed megaloblastic changes. This was caused by intrinsic factor deficiency shown by very little absorption of radio-labelled B₁₂ alone, but normal absorption of vitamin B₁₂ when given with intrinsic factor (Chanarin, 1979). There was no clinical or biochemical evidence of any other form of malabsorption. Before vitamin B₁₂ administration, total protein was 47 g/l, albumin was 34 g/l, IgG was 4.0 g/l, IgA was 0.6 g/l and IgM was less than 0.25 g/l. Serum transferrin was within the normal range. After vitamin B₁₂, albumin was unchanged, IgG rose to 7.7 g/l, IgA to 1.0 g/l and IgM to 0.65 g/l. Concurrently, haemoglobin rose to 11.4 g/dl with an MCV of 69 fl.
Discussion

The hypogammaglobulinaemia in these patients was mild and was of no obvious clinical significance. Low immunoglobulins in a patient with vitamin B₁₂ deficiency, rising after vitamin B₁₂ therapy, have only been described once before in an infant with congenital transcobalamin II deficiency (Hitzig & Kenny, 1975). The first patient may have had such a deficiency in view of the abnormality of liver synthesized proteins suggested by the low serum albumin. However, the second patient had a relatively normal serum albumin and also a normal transferrin level suggesting no disturbance in liver protein synthesis. Furthermore, an adult case of transcobalamin II deficiency had normal gammaglobulins (Lawrence, 1966).

Vitamin B₁₂ does seem to be necessary for immunoglobulin synthesis by lymphocytes (Hitzig & Kenny, 1975). This is not surprising in view of the importance of vitamin B₁₂ to metabolic events within the cell. However, low immunoglobulin levels are rare in such patients, so in these patients the lymphocytes may have been unusually sensitive to vitamin B₁₂ deficiency.

Acknowledgements

I thank Dr H.J.F. Hodgson and Professor H.M. Hodkinson for helpful discussions and permission to report their patients.

References


Clinical and Experimental Immunology, 20, 105.
Immunoglobulin deficiency responding to vitamin B12 in two elderly patients with megaloblastic anaemia.

K. Kafetz

doi: 10.1136/pgmj.61.722.1065

Updated information and services can be found at:
http://pmj.bmj.com/content/61/722/1065

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/