Acute renal failure with polyarteritis nodosa and multiple myeloma

A.J. Williams, A.C. Newland and F.P. Marsh

The Departments of Nephrology and Haematology, The London Hospital, Whitechapel, London, E.1., UK.

Summary: A patient who presented with acute renal failure due to renal cortical necrosis is described. Renal biopsy showed cortical infarction and angiography demonstrated aneurysms in the renal, splenic and hepatic circulations. Concurrently he was found to have an IgA kappa paraprotein with bone marrow changes diagnostic of multiple myeloma. He was treated with haemodialysis, immunosuppressive drugs and plasma exchange but died 3 months after presentation.

Introduction

The cause of polyarteritis nodosa is unknown although there is indirect evidence that immune complexes are involved (Ronco et al., 1983). The condition has been described in association with viral infections (Gocke et al., 1970; Trepo et al., 1974; Drueke et al., 1980; Doherty & Bradfield, 1981) and various lymphoproliferative disorders (Christianson & Fine, 1967; Gerber et al., 1972; Elkon et al., 1979) but we have found only one report of polyarteritis nodosa complicating multiple myeloma (Hallen, 1966). Here we describe another such case which presented with acute renal failure.

Case report

A 51 year old man presented with anuria. Three years previously his renal function was normal when starting anti-hypertensive treatment with methyldopa. He was otherwise well until 4 days before admission when he developed colicky abdominal pain, then arthralgia involving hands, wrists, elbows and ankles, followed by anuria. On examination he was febrile (37.5°C) and hypertensive (BP 180/100 mmHg). He was tender in the left iliac fossa and had a swollen right hand, tenderness over the dorsum of the left foot and a sterile effusion of the right knee. Investigation showed a normochromic normocytic anaemia (Hb 7.5 g/dl), leucocytosis (13.6 x 10^9/l; neutrophils 70%, eosinophils 11%) reduced platelets (125 x 10^9/l) and a raised ESR (119 mm/h). A clotting screen was normal. Plasma urea was 41.4 mmol/l, creatinine 1208 µmol/l, calcium 2.12 mmol/l, alkaline phosphatase 128 IU/l (normal 30–85 IU/l), urate 726 mmol/l, aspartate transaminase 128 U/l (normal 15–40 U/l), albumin 28 g/l and globulin 37 g/l. Autoantibody screening was negative, as were tests for hepatitis B surface antigen and cytomegalovirus antibody. Serum complement (C3, C4, CH50) levels were normal. Immune complex assay using polyethylene glycol precipitation was positive although C1q binding was normal. Cryoglobulins were not detected but a serum immunoglobulin assay showed elevated IgA (945 mg/dl; normal range 80–274) but low IgG (496 mg/dl; normal range 486–1653) and IgM (57 mg/dl; normal range 51–183). Immunoelectrophoresis confirmed an IgA kappa paraprotein. Bone marrow aspiration supported the diagnosis of myeloma, with plasma cells — many of bizarre morphology — accounting for more than 16% of the nucleated cells present.

Chest and skull X-rays and renal ultrasonography were normal. A 99mTc-DTPA scan showed poor perfusion of both kidneys. Renal and coeliac axis angiography showed changes consistent with renal cortical necrosis (Figure 1) and aneurysms in the renal, splenic and hepatic circulation (Figure 2). Renal biopsy showed cortical necrosis. Some tubules contained red cell casts and many arterioles showed fibroelastic intimal proliferation. Those glomeruli which were not necrosed showed partial collapse and some proliferative changes. Immunofluorescence microscopy was negative.

The patient was dialysed and treated for polyarteritis with antihypertensive drugs, prednisolone, azathioprine, dipyridamole and anticoagulants. Ten plasma exchanges, each of 4 l, were carried out over 30 d in an attempt to reduce his circulating immune
complexes. Following diagnosis of multiple myeloma, cyclophosphamide was substituted for azathioprine. He remained anuric and developed severe sepsis, because of which cytotoxic therapy was suspended after 6 weeks. Perforation of the sigmoid colon was complicated by septicaemia and bone marrow depression. He died 3 months after presentation.

Discussion

Two types of renal lesion are found in polyarteritis. The 'microscopic' variety is characterized by a proliferative, sometimes crescentic glomerulonephritis. In the 'macroscopic' form, medium sized arteries including renal arcuate and interlobar vessels are involved, with disruption of the elastic lamina, fibrinoid necrosis, thrombosis and aneurysm formation. Renal infarction with cortical necrosis, as in our patient, may follow (Ladefoged et al., 1969).

Several of the glomeruli showed proliferative changes probably due to ischaemia. Alternatively, these may have represented a glomerulonephritis complicating polyarteritis or myeloma, although this is less likely. Such lesions in myeloma are rare, and have been thought to be due to the physico-chemical properties of the light chains (Beaufils & Morel-Maroger, 1978). A nodular glomerulopathy with thickening of glomerular and tubular basement membranes and mesangial deposits of kappa light chains has been described (Randall et al., 1976; Seymour et al., 1980; Gallo et al., 1980; Knobler et al., 1983). Sometimes more severe mesangial (Avasthi et al., 1977) or intra- and extra-capillary cell proliferation with crescent formation occurs (Kaplan & Kaplan, 1970; Dhar et al., 1977; Silva et al., 1980).

The myeloma may have been associated with polyarteritis by chance, but seems more likely to have

Figure 1 Bilateral renal arteriograms showing microaneurysms and evidence of renal cortical ischaemia. Aneurysms are clearly seen in Figure 1a. In Figure 1b a zone of tissue without perfusion can be seen between a capsular vessel (arrowed) and the perfused inner cortex.

Figure 2 Hepatic and splenic arteriograms showing aneurysms in both organs.
been related aetiologically to it. Polyarteritis has been linked with cryoglobulinaemia, benign IgG paraproteinaemia (Hrcnir et al., 1974) and various other lymphoproliferative disorders, in particular hairy cell leukemia, in which the abnormal cells are capable of immunoglobulin synthesis (Elkon et al., 1979). Such associations could be due to a direct effect of abnormal immunoglobulins, with or without immune complex formation, or to diminished reticuloendothelial clearance of immune complexes which would otherwise not provoke vascular damage (Haakenstad & Mannik, 1974; Beaufils & Morel-Maroger, 1978). Evidence for such pathogenic involvement of immune complexes comes from the finding of hypocomplementaemia, cryoglobulinaemia and C3 de-
position in the glomeruli, in patients with paraprotein-amaeias (Kaplan & Kaplan, 1970). In patients with mixed essential cryoglobulinaemia it is thought that a vasculitis with renal involvement can result from deposition of IgG–IgM complexes in vessel walls (Franklin, 1980; Tarantino et al., 1981).

In our patient, cytotoxic therapy and plasma exchange were used in the hope that they would suppress the malignant clone of plasma cells and remove factors responsible for the vasculitis. They reduced the levels of circulating paraproteins and immune complexes but did not benefit him clinically or cause any improvement in renal function. Throughout his illness there was clinical evidence of active vasculitis.

References


Acute renal failure with polyarteritis nodosa and multiple myeloma.
A. J. Williams, A. C. Newland and F. P. Marsh

doi: 10.1136/pgmj.61.715.445

Updated information and services can be found at:
http://pmj.bmj.com/content/61/715/445

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/