Alpha$_2$HS-glycoprotein in the serum and urine of patients with renal diseases

B. K. KISHORE M.D.

F. GEJYO M.D.

M. ARAKAWA M.D.

Second Department of Internal Medicine, Niigata University School of Medicine, 1-754 Asahimachi-dori, Niigata 951, Japan

Summary

The concentration of alpha$_2$HS-glycoprotein (a$_2$HS-GP), as measured by the single radial immunodiffusion technique in the sera of 52 patients with various renal diseases and varying degrees of proteinuria, was found to be significantly reduced ($P<0.001$) when compared to the control values. Out of the 52 patients examined, 34 were found to excrete a$_2$HS-GP in urine with no correlation between the serum and urine levels of this protein. Although there is a statistically significant correlation between the clearances of albumin and a$_2$HS-GP, in only six patients were the clearances of a$_2$HS-GP within ± 25% of albumin clearance. Twelve had higher, and 16 had lower, relative clearances of a$_2$HS-GP. The relative clearance of a$_2$HS-GP had no relation to the serum levels of a$_2$HS-GP, but correlated with the degree of proteinuria and the type of histological lesion in the kidney. In conclusion, there is a quantitative reduction of serum a$_2$HS-GP in patients with renal diseases. It appears that the degree of proteinuria and the type of renal lesion influences its selective handling by the kidneys.

KEY WORDS: Alpha$_2$HS-glycoprotein, renal diseases, proteinuria, renal clearance.

Introduction

Alpha$_2$HS-glycoprotein (a$_2$HS-GP), a normal human plasma globulin, is a negative acute-phase reactant and its concentration is altered in many unrelated disease states (Putnam, 1975; Lebreton et al., 1979; Schelp et al., 1980) including malignancy (Baskies et al., 1980). It has been reported that a$_2$HS-GP has some opsonic properties (Van Oss et al., 1974) and a role in the mineral phase of bone (Ashton, Höhling and Triffitt, 1976). Its physicochemical properties and micro-heterogeneity are well documented (Gejyo and Schmid, 1981).

In the present work, we made a preliminary investigation of the serum and urinary levels of a$_2$HS-GP in various renal diseases with special reference to its clearance in relation to that of albumin. Urinary concentrations of total protein and fibrinogen degradation products (FDP) were also determined.

Materials and methods

Patients

Fifty-two patients with renal disease (28 males and 24 females) selected randomly from the nephrology unit of the Niigata University Hospital constituted the study material. The diagnosis was based on the clinical, biochemical and histopathological examinations. Forty-seven patients had mainly glomerular diseases. Two patients had polycystic kidneys, another 2 had interstitial nephritis and one had only postural proteinuria. The proteinuria in the patients varied from a ‘trace’ to 14 g/litre, but the majority of them excreted more than 1 g/litre. Patients having disorders or complications known to influence the serum levels of a$_2$HS-GP were not included in the study and all the patients had normal serum alkaline phosphatase activity.

Methods

Serum and urine samples collected from the patients were stored at -20°C. An aliquot (5 ml) of each urine sample was dialysed, lyophilised and finally reconstituted with a small volume of buffered solution to give 10-times concentrated samples. The amounts of a$_2$HS-GP and albumin in these samples were measured by the single radial immunodiffusion technique using commercial plates (Behringwerke AG, Marburg, FRG) according to the instructions of the manufacturer. The serum levels of a$_2$HS-GP were also measured by the same technique. Standard sera
were purchased from the same company. Total protein and FDP in unconcentrated urine samples were quantitated by Ebach's method and latex test (Melliger, 1970) respectively. Serum total protein was measured by standard methods on an autoanalysar (Hitachi M400). Glomerular filtration rate was assessed by sodium thiosulphate clearance (C\textsubscript{TmO\textsubscript{2}}) according to the method described by Newman, Gilman and Philips (1946).

Results

Table 1 shows the serum and urine levels of \(\alpha \)-HS-GP in the patients with various renal diseases. The serum \(\alpha \)-HS-GP in all the patients studied, as well as in the patients with membranous nephropathy, lupus nephrophy and membranoproliferative glomerulonephritis (MPGN), was found to be significantly reduced when compared to the control values established in 52 healthy individuals in our laboratory by the same technique. Out of the 52 patients studied, 34 showed \(\alpha \)-HS-GP in urine with a mean value of 1.27 mg/dl. The number of cases in each group which were positive for urinary \(\alpha \)-HS-GP, together with their mean values, are also given in Table 1. Out of the 5 healthy individuals screened for \(\alpha \)-HS-GP in urine, only one was found to be positive with a value of 0.15 mg/dl.

Serum total protein concentration did not correlate with serum \(\alpha \)-HS-GP (\(r = 0.266; n = 52 \)), but correlated significantly and inversely with \(\alpha \)-HS-GP in urine (\(r = -0.357; n = 34; P < 0.005 \)). There was a significant correlation between the serum total protein and serum albumin (\(r = 0.78; n = 52; P < 0.001 \)). A highly significant correlation was found between \(\alpha \)-HS-GP in urine and urinary FDP on one hand (\(r = 0.75; n = 32; P < 0.001 \)) and with urinary total protein on the other (\(r = 0.75; n = 34; P < 0.001 \)). A significant correlation also existed between urinary total protein and FDP (\(r = 0.54; n = 32; P < 0.01 \)). No statistically significant relation could be found between the glomerular filtration rate and urinary \(\alpha \)-HS-GP (\(r = 0.24; n = 33 \)).

Though the urinary losses of albumin and \(\alpha \)-HS-GP (\(r = 0.50; n = 34; P < 0.01 \)) and their clearances correlated significantly (\(r = 0.68; n = 34; P < 0.001 \)), of special interest in this study was the finding of no correlation between the serum and urine levels of \(\alpha \)-HS-GP (\(r = 0.04; n = 34 \)), whereas a good correlation existed between the serum and urinary levels of albumin (\(r = 0.37; n = 32; P < 0.05 \)). A closer examination of the relative clearance of \(\alpha \)-HS-GP (\(C_{\text{aHS-GP}} \)) (relative to that of albumin) revealed that out of the 34 patients found to excrete \(\alpha \)-HS-GP in urine, only 18% showed comparable clearances (i.e., within ±25% of albumin clearance, \(C_{\text{albumin}} \)), while 35% had higher and 47% had lower clearances. The relative clearance of \(\alpha \)-HS-GP had no correlation with its serum levels (\(r = -0.13; n = 34 \)), but had a correlation with its urine levels (\(r = -0.39; n = 33; P < 0.05 \)). A semilog plot of \(C_{\text{albumin}}/C_{\alpha \text{HS-GP}} \times 100 \) v. proteinuria had revealed some more salient features (Fig. 1). In Fig. 1, each type of renal lesion can also be identified by a specific symbol and an inset is drawn to enclose such of those cases deviating markedly from a possible regression line (interrupted line). If these patients are excluded, the rest will have a statistically significant regression line at the 1% confidence level. The possible relevance of these findings is discussed below.

Discussion

The present work is a study of the variation in the serum and urine levels of \(\alpha \)-HS-GP in renal diseases with emphasis on its relative clearance. From our data, it is clear that the serum concentration of \(\alpha \)-HS-GP is reduced in renal diseases and the reduction is more prominent in certain types. The fact that the decrease in the \(\alpha \)-HS-GP concentration in the sera of patients is not a consequence of such non-specific factors as haemodilution or decreased plasma protein synthesis is substantiated by a non-significant correlation between the serum total protein and serum \(\alpha \)-HS-GP levels, whereas a highly significant correlation existed between serum albumin and serum total protein.

The lack of correlation between the serum and urinary levels of \(\alpha \)-HS-GP prompted us to consider its possible tubular reabsorption. The results of
B. K. Kishore, M. Arakawa and F. Gejyo

Table 1. The concentration of alpha2-HS-glycoprotein in the serum and urine of patients with renal diseases (mean ± s.d.)

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>n</th>
<th>α_2-HS-GP in serum (mg/dl)</th>
<th>n</th>
<th>α_2-HS-GP in urine (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal controls</td>
<td>(52)</td>
<td>65.65 ± 6.96</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>All the patients studied</td>
<td>(52)</td>
<td>53.01 ± 15.72*</td>
<td>(34)</td>
<td>1.27 ± 1.45</td>
</tr>
<tr>
<td>Membranous nephropathy</td>
<td>(9)</td>
<td>52.71 ± 14.13†</td>
<td>(7)</td>
<td>1.71 ± 2.49</td>
</tr>
<tr>
<td>Lupus nephropathy</td>
<td>(7)</td>
<td>44.60 ± 15.38*</td>
<td>(4)</td>
<td>0.65 ± 0.34</td>
</tr>
<tr>
<td>Toxaemia of pregnancy</td>
<td>(7)</td>
<td>63.18 ± 12.60</td>
<td>(5)</td>
<td>2.14 ± 1.88</td>
</tr>
<tr>
<td>MPGN</td>
<td>(6)</td>
<td>42.79 ± 9.42*</td>
<td>(5)</td>
<td>0.95 ± 1.26</td>
</tr>
<tr>
<td>Chronic GN</td>
<td>(5)</td>
<td>56.73 ± 14.73</td>
<td>(2)</td>
<td>0.63 ± 0.68</td>
</tr>
<tr>
<td>Chronic renal failure</td>
<td>(4)</td>
<td>58.99 ± 17.33</td>
<td>(4)</td>
<td>1.09 ± 0.62</td>
</tr>
<tr>
<td>Acute GN</td>
<td>(3)</td>
<td>62.21 ± 18.22</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Minimal change nephritis</td>
<td>(2)</td>
<td>41.29 ± 14.62</td>
<td>(1)</td>
<td>2.01</td>
</tr>
<tr>
<td>Interstitial nephritis</td>
<td>(2)</td>
<td>67.25 ± 28.07</td>
<td>(2)</td>
<td>0.83 ± 0.54</td>
</tr>
<tr>
<td>Polycystic kidneys</td>
<td>(2)</td>
<td>50.45 ± 2.62</td>
<td>(2)</td>
<td>0.90 ± 03</td>
</tr>
<tr>
<td>Postural proteinuria</td>
<td>(1)</td>
<td>75.12</td>
<td>(1)</td>
<td>0.78</td>
</tr>
<tr>
<td>DM with essential benign hypertension</td>
<td>(1)</td>
<td>58.12</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Mixed connective tissue disease with mesangio-proliferative GN</td>
<td>(1)</td>
<td>55.56</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Renal amyloidosis with Behçet's disease</td>
<td>(1)</td>
<td>33.91</td>
<td>(1)</td>
<td>1.30</td>
</tr>
<tr>
<td>Focal glomerulosclerosis</td>
<td>(1)</td>
<td>23.83</td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: MPGN: Membranoproliferative glomerulonephritis; DM: Diabetes mellitus; GN: Glomerulonephritis; ND: Not detectable. *$P<0.001$, †$P<0.01$ (Student's t-test).

clearance studies also supported this notion. Alpha2-HS-glycoprotein with a molecular weight of 51~56000 is smaller in size than albumin and a clearance very close to, or a little higher than that of albumin would be expected if it were not further handled by the tubules. However, the clearance data show that a considerable degree of this protein is being reabsorbed by tubules. As many as 47% of the patients had lower clearances. Although it is not possible to identify all the factors affecting the relative clearance of α_2-HS-GP, Fig. 1 reveals that it is influenced by the degree of proteinuria and the type of renal lesion. It is evident from the figure that there is a possible correlation between the degree of proteinuria and the relative clearance of α_2-HS-GP, and that patients with only certain types of lesions deviated markedly from this regression line. These deviating lesions (inset in Fig. 1) included interstitial nephritis, polycystic kidney, where tubules are affected, postural proteinuria, renal amyloidosis with Behçet’s disease and a few cases of lupus nephritis. Although all of these patients excreted less than 2-5 g/litre of protein, their tubular reabsorptive capacity was obviously not coping with the urinary losses of α_2-HS-GP, even at a comparatively low proteinuria. The rest of the patients depicted in Fig. 1, despite some scattering, followed a regression line that significantly correlated the relative clearance of α_2-HS-GP with proteinuria.

It is possible to interpret Fig. 1 in another way. As expected, patients with tubular interstitial diseases and polycystic kidneys had high relative clearances, even at comparatively low proteinuria indicating the failure of the damaged tubules to reabsorb α_2-HS-GP effectively. On the other hand, patients with glomerular lesions, in general, showed low relative clearances indicating effective tubular reabsorption, the exceptions being only those cases where there was...
massive proteinuria (>11 g/litre). These cases of glomerular lesions with massive proteinuria and high relative clearances obviously point to the saturation of tubular reabsorptive capacity and consequent 'overflow', rather than a defect in the tubules. In this context, it is noteworthy that such a type of overflow occurred only in one or two cases of glomerular lesions, only when the proteinuria was massive (more than 11 g/litre). It is an approximate measure of the tubular reabsorptive capacity for this protein. Though how far such a pattern of relative clearance is related to the histological lesions in the kidney and to the degree of proteinuria can be debatable, it is interesting that a strong association does exist among these 3 variables in our study.

Many studies are available on proteinuria in health and renal diseases both in experimental animals and man (Weise, 1981). Yet our knowledge of renal handling of proteins, even in health, is not as advanced as that of the handling of low molecular weight solutes such as amino acids, sugars and electrolytes by the nephron, for which many transport systems are identified and even characterised. Our understanding of the mechanism of tubular reabsorption of proteins, even in health, is fragmentary. The situation is further complicated in diseases where glomeruli, tubules or both are affected to varying degrees. Bienenstock and Poortmans (1970) studied the renal clearances of 15 plasma proteins (excluding α₂HS-GP) in 10 patients with renal diseases of mainly glomerular origin. Their results strongly suggest that in renal diseases, the handling of proteins by the nephron may be selective. They found that even proteins of similar molecular size and charge were differently handled by the kidneys in disease. They showed that 3 proteins with lower molecular weights, α₁ anti-trypsin (mol. wt. = 45000), α₁Gc-globulin (mol. wt. = 50000) and pre-albumin (mol. wt. = 61000) consistently had clearances lower than that of albumin. However, in our study with α₂HS-GP (mol. wt. 51~56000), we could not find such a consistent lower clearance, possibly due to the influence of the other 2 factors, namely the degree of proteinuria and the type of renal lesion as discussed above. It seems reasonable that, apart from these 2 factors, our observations are in accordance with the findings of Bienenstock and Poortmans and lend credence to the theory of selective clearance of proteins.

In conclusion, our study shows that the concentration of serum α₂HS-GP is reduced in patients with renal diseases and its relative clearance is apparently influenced by the degree of proteinuria and the type of renal lesion.

Acknowledgment

Dr Kishore is a recipient of a Research Fellowship from the Ministry of Education, Science and Culture (MOMBUSHO), Japan. Our thanks are due to Mr Watanabe for lyophilising the urine samples and Ms Yamagiwa for FDP estimation.

References

(Accepted 25 November 1982)
Alpha 2HS-glycoprotein in the serum and urine of patients with renal diseases.

B. K. Kishore, F. Gejyo and M. Arakawa

doi: 10.1136/pgmj.59.691.304

Updated information and services can be found at:

http://pmj.bmj.com/content/59/691/304

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/