Kocher-Debré-Sémélaigne syndrome and congenital nystagmus

K. Radhakrishnan†
M.D., D.M., M.A.M.S.

B. N. S. Walia*
M.D., D.C.H., M.A.M.S.

K. Venkateswarlu*
M.B.B.S.

S. B. S. Mann‡
M.S.

Departments of †Neurology, *Paediatrics and ‡Otorhinolaryngology
Postgraduate Institute of Medical Education and Research, Chandigarh–160012, India

Summary
A 11-year-old boy with hypothyroidism developed generalized muscle hypertrophy and proximal muscular weakness. Electromyographic findings were suggestive of myopathy. He had had congenital nystagmus (CN) since early infancy. Although the association of childhood hypothyroidism and CN has been documented before, the triad of hypothyroidism, hypertrophic myopathy and CN exhibited by the patient is believed to be unique.

Introduction
The uncommon association of muscle hypertrophy with childhood hypothyroidism has been referred to as the Kocher-Debré-Sémélaigne (KDS) syndrome (Najjar and Nachmann, 1965; Spiro et al., 1970). Congenital nystagmus (CN) is an ocular movement disorder apparent at birth or shortly thereafter, characterized by bilateral pendular or jerk nystagmus with an eccentric neutral position in which the nystagmus slows or stops (Gay et al., 1974). The present report describes a patient with KDS syndrome and CN. The occurrence of two rare abnormalities suggests that their association is more than a mere coincidence.

Case report
An 11-year-old male child was seen by us in September, 1980 with complaints of failure to grow, constipation, cold intolerance, loss of initiative and somnolence of 3–4 years duration. His school performance was poor and he took little interest in games. Developmental milestones up to the age of 3 years were normal, although the parents were aware of the abnormal eye movements he had had since early infancy. His younger brother, 4 years old, was normal and there was no history of dwarfism, goitre, or eye movement disorders in other members of the family.

He had an infantile look, dull facies and dry skin. His height was 101 cm (<3rd percentile) with upper/lower segment ratio of 1:2. The body weight was 16.2 kg (<3rd percentile) and the head circumference was 49 cm. All these parameters corresponded to the age of 3–4 years (Fig. 1). There was no thyroid swelling. He was slow to respond to questions and the IQ was 78. Muscles were bulky, especially in the calves. There was mild proximal weakness (power grade 4/5) at the shoulders. He had a waddling gait and was unable to get up from the sitting position unaided. Deep tendon jerks were slowed in contraction and relaxation, especially at the ankles. Neuro-ophthalmological examination disclosed normal visual acuity and a normal optic fundus in each eye. Ocular movements were full. Coarse horizontal nystagmus was evident in all directions of gaze and he did not have any oscillopsia. With gaze 10–20° to the left of primary position, the nystagmus diminished markedly and he had a constant head turn to the right side (Fig. 1). The nystagmus was absent on convergence and there was no vertical nystagmus. No other neurological deficit was demonstrable and the rest of the systemic examination showed no abnormality.

Laboratory findings
Normal investigations included urine analysis, haematocrit, blood biochemistry and radiographs of chest and skull. Serum cholesterol was 5.16 mmol/l. Electrocardiogram showed a low voltage graph with heart rate of 70/min. Skeletal X-rays disclosed normal upper femoral epiphyses and only three carpal bones (Fig. 2), which corresponded to the retarded bone age of 3 years. Thyroid function tests showed: PBI 228.5 nmol/l (normal 315–630 nmol/l), serum thyroxine (T₄) 20.6 nmol/l (normal 87.5–148 nmol/l), serum triiodothyronine (T₃) 0.6 nmol/l (normal 0.9–1.2 nmol/l. Muscle enzymes:
serum aldolase 15 SL units/ml (normal 2–8 SL units/ml), serum creatine kinase 11 Sigma units/ml (normal 3–13 Sigma units/ml).

Electromyography (EMG) was done with Medelec MS 6 Electromyograph under standard conditions with concentric needle electrodes. The calf muscles showed no spontaneous activity at rest, motor unit potentials of 50–100 μV in amplitude and 2–4 msec in duration with 30% polyphasic potentials, and normal recruitment pattern on maximal voluntary activity. These findings suggested a myopathy. Electronystagmography confirmed the clinical features of the nystagmus and showed the null point 10–12° to the left of primary position (Fig. 3).

He was treated with L-thyroxine 50 μg/day, gradually stepped up to 100 μg/day. He was alert, attentive and relieved of the constipation when last seen in July 1981. Pulse rate was 92/min. There was decrease in calf muscle size and no girdle muscle weakness was demonstrable. The nystagmus persisted.

Discussion

The KDS syndrome refers to the unusual symptom complex of muscle hypertrophy with childhood hypothyroidism (Najjar and Nachmann, 1965; Spiro et al., 1970). The muscular involvement is generalized, prominent in the calf muscles, giving these children an athletic appearance (Najjar and Nachmann, 1965). EMG studies in hypothyroidism have shown normal to frankly myopathic changes (Waldstein et al., 1958; Schwarz and Rose, 1963). Although there is an intimate relationship between thyroid function and muscle metabolism, the structural functional relationship is unclear and the pathogenesis of muscle hypertrophy in hypothyroidism is unknown. The changes on pretreatment biopsy have been shown to reverse completely with thyroid therapy (Spiro et al., 1970). The clinical
features and hormone profile in our patient are diagnostic of sporadic thyropropic hypothyroidism. The bulky muscles, proximal muscular weakness and EMG findings indicated hypertrophic myopathy. Decrease in muscle size and increase in muscle power on thyroid replacement therapy unequivocally establish its relation to hypothyroidism. Anthropometric and radiological findings date the onset of overt thyroid deficiency to around the age of 3 years.

A good account of the clinical characteristics of CN is given by Gay et al. (1974). Usually pendular in primary position, the nystagmus acquires a jerk-type character on lateral gaze and is markedly reduced or abolished on convergence. The nystagmus beats horizontally in all fields of gaze, and a horizontally beating nystagmus in upgaze is almost diagnostic of CN. There is an eccentric neutral position where the nystagmus slows or stops and most patients will develop a constant characteristic head posture. The nystagmus appears at birth or soon after and the patients usually have no visual symptoms. In the differentiation of congenital from acquired nystagmus, exploration of the three features (upgaze, null point and convergence effect) by electronystagmography may provide decisive information (Barber and Stockwell, 1976). The clinical features and electronystagmogram in the present patient are pathognomonic of CN.

The association of CN and hypothyroidism has
been documented possibly only once in the literature. Schulman and Crawford (1969) described 5 cases of hypothyroidism with CN. CN is usually hereditary (Gay et al., 1974) but in patients with hypothyroidism no family history was obtained (Schulman and Crawford, 1969). Although prompt replacement therapy has been shown to result in the disappearance of the nystagmus in one of the cases reported by Schulman and Crawford (1969), the majority of their patients continued to manifest nystagmus despite adequate thyroid therapy. The patient under discussion exhibited no change in the nystagmus during the 10-month period of replacement therapy.

The basic pathology in CN is unknown; the classical motor-defect type may involve the corticospinal pathways, possibly the result of failure or delay in their maturation (Cogan, 1967). There is experimental evidence to indicate impairment in the development of the nerve cell processes and retarded myelination of the axon in the central nervous system in hypothyroidism (Greene, 1976). These changes are largely irreversible, a fact reflected in the poor response of the neurological impairment to delayed treatment of the human cretin (Man, Mermann and Cooke, 1963). Although the onset of overt hormone deficiency in our patient was at about 3 years of age, vulnerable areas in the central nervous system might have been involved even in the subclinical stage. This might explain the isolated restricted involvement of the oculomotor system in the present patient. It is an established fact that deficiency of the postnatal concentration of thyroxine or inadequate replacement therapy in congenital hypothyroidism may promote normal physical growth, but can leave irreparable imprints on the central nervous system development (Man et al., 1963).

References
Kocher-Debré-Sémélaigne syndrome and congenital nystagmus

K. Radhakrishnan, B. N. S. Walia, K. Venkateswarlu and S. B. S. Mann

doi: 10.1136/pgmj.58.679.307

Updated information and services can be found at:
http://pmj.bmj.com/content/58/679/307

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/