Bladder instability in patients with prostatic hypertrophy

RODNEY A. APPELL
M.D.

Department of Urology, The London Hospital, London, England E1 1BB, and Department of Urology, Louisiana State University Medical Center, New Orleans, Louisiana, U.S.A. 70112

Summary
In 29 patients with urinary obstruction due to prostatic enlargement, medium-fill water cystometry was performed before prostatectomy and again 3 months after. A high incidence of detrusor hyperreflexia was observed pre-operatively, but findings were essentially normal 3 months after resection of the prostate. Possible mechanisms to explain normality were demonstrated previously in the mechanism of bladder outflow obstruction (Appell et al., 1980), as it may constitute a barrier to low-pressure urinary flow which is unaffected by maximal urethral myogenic relaxation. However, the clinical degree of prostatic enlargement is poorly related to the severity of outflow obstruction (Turner-Warwick et al., 1973). Uroflowmetry (Shoukry et al., 1975), combined urodynamic (Turner-Warwick and Whiteside, 1970), and uro-radiological (Shopfner, 1965) studies have made inroads into the understanding of obstructed micturition.

The detrusor responds to outflow obstruction in a variety of patterns and the question arises whether these differing patterns represent different reactions to the same mechanical obstruction or represent different stages in the development of the disordered vesico-urethral function. The purpose of this study was to assess detrusor function during clinical mechanical obstruction of bladder outflow by an enlargement of the prostate.

Patients and methods
Twenty-nine patients with clinical prostatic enlargement were studied at the time of proposed transurethral prostatic resection (TURP). Eighteen of these had been admitted in urinary retention, while the remaining 11 had varying degrees of prostatism. None of the patients was taking any medication and none received pre-study medication. None of the patients presented evidence of neurological disease.

Detrusor reflex function was assessed by means of room temperature medium-fill water cystometry performed in the supine position through a 12-F (Charrière) catheter containing two 1-mm perfusion apertures. Perfusion pressures were monitored by a standard side-arm transducer and displayed on an X-Y recorder.

All patients had repeat cystometry 3 months after TURP.

Results
Histological examination of the resected prostatic tissue revealed benign hyperplasia in all cases and all pre-operative urine cultures showed no growth of bacteria. Before TURP, cystometry revealed detrusor hyperreflexia in 12/18 patients with urinary retention and in 6/11 patients with prostatism (Table 1). Normal cystometry implied normal sensation of fullness and the presence of a detrusor reflex which could be voluntarily suppressed on command. Detrusor hyperreflexia was defined as a detrusor reflex evoked at low bladder distention which could not be voluntarily suppressed, while detrusor areflexia was defined as the absence of the detrusor reflex during bladder filling. Cystometry performed 3 months after TURP (Table 1) demonstrated no detrusor hyperreflexia in any patient who had been in urinary retention before TURP. However, 1/6 of the patients not in retention before TURP with detrusor hyperreflexia continued to manifest detrusor hyperreflexia postoperatively.

No relationship could be found between the cystometric findings and prostatic size.

Discussion
The results of cystometry in this group of patients...
Bladder instability and prostatic hypertrophy

<table>
<thead>
<tr>
<th>Patient status (n)</th>
<th>No. before</th>
<th>No. after</th>
<th>Prostatic weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) in urinary retention (18)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— hyper-reflexia</td>
<td>12</td>
<td>0</td>
<td>11; 12; 15; 16; 18; 18; 19; 22; 25; 25; 35.</td>
</tr>
<tr>
<td>— areflexia</td>
<td>2</td>
<td>2</td>
<td>11; 38.</td>
</tr>
<tr>
<td>— normal</td>
<td>4</td>
<td>16</td>
<td>10; 22; 30; 70.</td>
</tr>
<tr>
<td>(b) with prostatism (11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— hyper-reflexia</td>
<td>6</td>
<td>1</td>
<td>11; 15; 18; 18; 34; 38.</td>
</tr>
<tr>
<td>— areflexia</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>— normal</td>
<td>5</td>
<td>10</td>
<td>12; 16; 24; 30; 30.</td>
</tr>
</tbody>
</table>

support the findings in prior studies utilizing water cystometry (Andersen, 1976) and gas cystometry (Andersen and Bradley, 1976) of a high incidence of detrusor hyperreflexia in patients with prostatic enlargement.

The high incidence of detrusor hyperreflexia in patients with bladder outlet obstruction due to prostatic enlargement but no obvious neurological disease may be triggered by anatomical distortion of the heavily sensory innervated posterior urethra. Andersen and Bradley (1976) likened this compression effect on sensory nerve endings to an entrapment neuropathy. If this were true, surgical reduction of the prostatic mass causing the compression would be expected to decompress the nerve endings and allow a change in the detrusor reflex function. This is precisely what was found when cystometry was performed 3 months after surgery, i.e. a return to a normal cystometric response. This is further supported by the recent study by Rao et al. (1979) who found that 60% of men subjected to prostatectomy had unstable bladders, but that 82% had normal studies several months after prostatectomy.

This study, however, clearly demonstrates that prostatic size alone does not relate to the cystometric findings of detrusor hyperreflexia. The interaction of smooth muscular tone of the posterior urethra under sympathetic nervous control and the prostatic mass is involved in production of outlet obstruction in this patient group, which helps to explain why patients with a lesser degree of prostatic enlargement may develop urinary retention while others with massive prostatic enlargement do not (Appell et al., 1980). The detrusor instability found in these patients appears to be related to the total outlet resistance and not to prostatic mass effect alone, and helps to explain the variety of patterns of detrusor response to outflow obstruction.

Acknowledgments

The expert technical assistance of Ms Joanna Caprera, L.P.N. is greatly appreciated.

References

Bladder instability in patients with prostatic hypertrophy

Rodney A. Appell

doi: 10.1136/pgmj.57.672.640

Updated information and services can be found at:
http://pmj.bmj.com/content/57/672/640

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/