Thyroid function tests during carbimazole therapy

D. L. SCOTT
M.R.C.P.

M. A. TAYLOR
M.R.C.P.

D. J. TYMMS
M.R.C.P.

C. CHAPMAN
Ph.D.

The Department of Nuclear Medicine, The General Infirmary, Leeds

Summary
Changes in plasma thyroxine (T₄), triiodothyronine (T₃), free thyroxine index (FT₄I) and thyroid stimulating hormone were studied in 100 patients with Graves’ disease treated with carbimazole. During therapy plasma T₃ concentrations were disproportionately high compared to those of T₄, the T₄ : T₃ ratio was low, and many patients were clinically euthyroid with a normal plasma T₄ but low T₃ concentration. Although there was considerable individual variation in response, the order of response was always the same with plasma T₄ falling to normal or low levels before T₃. Plasma T₄ was the best indicator of clinical status and the best predictor of impending change; additional information of changes in thyroid status was obtained from plasma T₃ and FT₄I estimation, especially when these were followed sequentially. Single measurements of T₄ or FT₄I only are not recommended for assessing thyroid function during carbimazole therapy.

Patients and methods
One hundred patients with Graves’ disease who were clinically thyrotoxic with raised plasma T₄ and T₃ concentrations before treatment were included. Those who had had previous destructive therapy to the thyroid were excluded. All had at least 6 months’ treatment with carbimazole, starting with doses of at least 40 mg daily and reduced to a maintenance dose of 5–20 mg daily. Eighteen were consecutive patients with Graves’ disease who were studied prospectively from 1973–75 (group A). This group had a mean age of 47.2 years (range 11–67) and 16 were female. In the first months of therapy they were seen every 1–2 weeks and thereafter every 1–2 months. Their clinical status was assessed, and recorded as thyrotoxic (slight, moderate, or severe), euthyroid, or hypothyroid (slight, moderate, or severe). At each visit blood was taken for estimations of plasma T₄, T₃, thyroid stimulating hormone (TSH) and the thyroid hormone distribution index (THDI) from which the free thyroxine index (FT₄I) and the free triiodothyronine index (FT₃I) were calculated.

A further 82 consecutive patients with Graves’ disease attending a thyroid clinic between 1976–78 were studied retrospectively (group B). These patients were seen at regular intervals, but less frequently than those in group A. They were assessed in a similar manner to the patients in group A and had similar laboratory tests with the exception of plasma TSH levels which were not measured routinely. The patients in group B had a mean age of 44.7 years (range 15–76) and 74 were females. Patients who were pregnant or taking the contraceptive pill were not included in either prospective or retrospective studies.

A control series consisted of 150 hospital outpatients who had thyroid function tests as part of therapy in 100 patients with Graves’ disease, and evaluated their clinical relevance.
the routine assessment of conditions such as osteoporosis, diarrhoea, and alopecia. They were all clinically euthyroid, none was acutely ill or had been admitted as a medical or surgical emergency. They were selected sequentially, on an alphabetical basis, from patients attending in 1978 and had had estimations of plasma T_4, T_3, FT_4 and FT_3. Their mean age was 44.9 years (range 14–67) and 131 were female.

Plasma T_3 and T_4 were measured by pre-precipitated double antibody radioimmunoassays, the distribution index as described by MacDonald, Chapman and Franklin (1976) and TSH by post-precipitated double antibody radioimmunoassay using material supplied by the National Pituitary Agency (U.S.A.); using as a standard the 1st International reference preparation human TSH 68/38.

Results

Before treatment, plasma T_4 and T_3 concentrations correlated exactly with the clinical assessment. During the first 6 months of treatment the clinical assessment in groups A and B agreed with the plasma T_3 on 64% of occasions, with the plasma T_4 on 54% of occasions and with both T_4 and T_3 on 39% of occasions. Detailed results are shown in Fig. 1.

The frequent assessment of group A patients provided detailed information of the changes initiated by carbimazole therapy (Table 1). The mean plasma T_4 concentration fell to normal by 2 weeks (individual variation 1–5 weeks); the mean FT$_4$ by 2 weeks (individual variation 1–4 weeks); the mean T_3 by 5 weeks (individual variations 1–26 weeks) and the mean FT$_3$ by 4 weeks (individual variations 2–26 weeks).

During treatment, T_4 entered the hypothyroid range in all the group A patients (varying in time from 5–22 weeks); T_3 entered this range in 12 patients. A transient rise in TSH was observed in

12 of the group A patients. These occasions were all preceded by a short period in which T_3 or FT_3 were in the hypothyroid range. Long periods during which T_4 and FT_4 were subnormal but T_3 and FT_3 were normal did not raise TSH above the normal range. Thyrotrophin releasing hormone (TRH) tests were not performed systematically. However, 3 group A patients had this test when their basal TSH was normal but all other biochemical parameters were below the normal range; in each case the 20-min TSH response to TRH was exaggerated. Clinical changes were even more variable and lagged behind

Table 1. Carbimazole therapy: Initial changes in plasma T_4 and T_3 (± s.e. mean)

<table>
<thead>
<tr>
<th>Weeks of therapy</th>
<th>T_4 (nmol/l)</th>
<th>T_3 (nmol/l)</th>
<th>$T_4 : T_3$ ratio</th>
<th>FT_4</th>
<th>FT_3</th>
<th>TSH (i.u./l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference ranges</td>
<td>60–140</td>
<td>1.6–3.0</td>
<td>1.2–3.0</td>
<td>2.5–5.0</td>
<td>6–18</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>218.8 (7.0)</td>
<td>7.35 (0.9)</td>
<td>33.8 (3.2)</td>
<td>6.15 (0.35)</td>
<td>22.10 (2.83)</td>
<td>8.7 (0.7)</td>
</tr>
<tr>
<td>1</td>
<td>166.9 (13.6)</td>
<td>5.51 (0.32)</td>
<td>30.4 (1.8)</td>
<td>3.84 (0.37)</td>
<td>12.3 (1.9)</td>
<td>8.8 (0.8)</td>
</tr>
<tr>
<td>2</td>
<td>122.6 (10.2)</td>
<td>4.03 (0.34)</td>
<td>29.0 (1.6)</td>
<td>2.54 (0.26)</td>
<td>8.22 (0.97)</td>
<td>7.3 (0.7)</td>
</tr>
<tr>
<td>3</td>
<td>106.2 (12.5)</td>
<td>3.87 (0.34)</td>
<td>26.6 (2.3)</td>
<td>2.00 (0.22)</td>
<td>6.64 (0.66)</td>
<td>9.9 (0.9)</td>
</tr>
<tr>
<td>4</td>
<td>95.3 (12.6)</td>
<td>3.17 (0.31)</td>
<td>30.1 (1.7)</td>
<td>1.48 (0.20)</td>
<td>4.89 (0.48)</td>
<td>9.6 (0.7)</td>
</tr>
<tr>
<td>5</td>
<td>84.4 (11.7)</td>
<td>2.88 (0.26)</td>
<td>26.6 (2.2)</td>
<td>1.15 (0.13)</td>
<td>3.92 (0.35)</td>
<td>9.3 (0.6)</td>
</tr>
<tr>
<td>6</td>
<td>77.9 (17.9)</td>
<td>2.77 (0.35)</td>
<td>23.4 (3.9)</td>
<td>0.84 (0.12)</td>
<td>3.24 (0.32)</td>
<td>12.8 (2.7)</td>
</tr>
<tr>
<td>7</td>
<td>54.9 (9.1)</td>
<td>2.19 (0.26)</td>
<td>24.0 (3.6)</td>
<td>0.86 (0.16)</td>
<td>3.34 (0.35)</td>
<td>12.4 (2.3)</td>
</tr>
<tr>
<td>8</td>
<td>44.1 (8.9)</td>
<td>2.09 (0.29)</td>
<td>22.3 (3.2)</td>
<td>0.61 (0.13)</td>
<td>2.63 (0.39)</td>
<td>16.7 (6.9)</td>
</tr>
<tr>
<td>9</td>
<td>44.9 (7.2)</td>
<td>1.82 (0.26)</td>
<td>22.3 (4.4)</td>
<td>0.72 (0.22)</td>
<td>2.83 (0.61)</td>
<td>19.8 (9.1)</td>
</tr>
<tr>
<td>10</td>
<td>39.6 (8.9)</td>
<td>2.37 (0.43)</td>
<td>18.3 (3.7)</td>
<td>0.62 (0.08)</td>
<td>3.05 (0.50)</td>
<td>20.4 (7.3)</td>
</tr>
<tr>
<td>11</td>
<td>56.7 (11.7)</td>
<td>2.39 (0.39)</td>
<td>23.7 (3.5)</td>
<td>0.65 (0.10)</td>
<td>3.10 (0.49)</td>
<td>18.0 (7.3)</td>
</tr>
</tbody>
</table>
all the biochemical parameters measured in this study.

The considerable individual variation in response to carbimazole is illustrated by the detailed results of 2 patients (Fig. 2). Both patients were females given initial doses of 40 mg carbimazole daily. Patient W.S. had persisting ‘T₃ toxicity’ during treatment, despite a fall in her plasma T₄ to hypothyroid concentrations. In contrast, patient D.S. had a rapid fall of both plasma T₄ and T₃ concentrations with a transitory rise in plasma TSH; her clinical status lagged behind the biochemical changes.

Five of the 100 patients had elevated plasma T₃ and FT₃I concentrations persisting for at least 6 months after commencing treatment. Clinically they were all mildly thyrotoxic, but their plasma T₄ and FT₄I concentrations had all rapidly fallen to normal or low levels. There was no evidence to suggest they were not taking carbimazole as prescribed and all responded to continuing high doses of carbimazole (30 mg or more daily). By one year they were all clinically and biochemically euthyroid.

The less frequent analysis of the 82 group B patients confirmed the findings seen in group A patients during carbimazole therapy. There was a rapid fall in T₄, followed by a slower and more variable fall in the concentration of T₃; clinical symptoms changed slower than both of these. The low T₄ : T₃ ratio seen in untreated Graves’ disease was not ‘normalized’ by carbimazole therapy, and remained considerably below that of the hospital control group (Table 2).

Discussion

The disproportionately high plasma T₃ and low T₄ : T₃ ratio which is characteristic of untreated Graves’ disease (Larsen, 1975), and occurs after radio-iodine and surgical treatment (Sterling et al., 1971), continues during carbimazole therapy. This is clearly shown by the results of this study and has been suggested from the results of a small survey by Linquette et al. (1978).

The response of the 18 patients in group A showed that during carbimazole therapy different parameters of thyroid function changed at different rates; the order of response was T₄, T₃, TSH and

![Graph](image_url)

Fig. 2. The variability of individual response to carbimazole in 2 females aged 48 years. Clinical assessment is given as thyrotoxic (T), euthyroid (E) or hypothyroid (H).

Table 2. Plasma T₄ and T₃ (± s.e. mean) in clinically euthyroid patients on carbimazole (from 82 patients 1976/78 Group B)

<table>
<thead>
<tr>
<th></th>
<th>T₄ (nmol/l)</th>
<th>T₃ (nmol/l)</th>
<th>T₄/T₃ ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference ranges</td>
<td>60–140</td>
<td>1.6–3.0</td>
<td></td>
</tr>
<tr>
<td>Hospital controls</td>
<td>96.1 (1.9)</td>
<td>1.94 (0.03)</td>
<td>51.5 (1.2)</td>
</tr>
<tr>
<td>1–2 months’ carbimazole</td>
<td>60.2 (4.8)*</td>
<td>1.87 (0.11)</td>
<td>32.6 (1.9)*</td>
</tr>
<tr>
<td>3–6 months’ carbimazole</td>
<td>67.0 (3.3)*</td>
<td>2.06 (0.08)</td>
<td>34.3 (1.7)*</td>
</tr>
</tbody>
</table>

*Significantly different from hospital controls (P<0.001).
lastly clinical assessment. Similar observations were made by Mortimer et al. (1977) in a study of 12 patients. There was marked individual variation in response; in any individual patient, changes in T_3, TSH, and clinical assessment could not be predicted from the T_4 values. In some patients, T_4 and FTI were in the hypothyroid range and T_3 in the hyperthyroid range. The divergence of T_3 and T_4 was most marked in the 5 patients with T_3 toxicity persisting for at least 6 months of treatment. This has previously been reported in a single case by Hollander et al. (1972) and in a small survey by Bellabarba and Tremblay (1972).

Plasma T_3 was the best indicator of thyroid status and the best predictor, in sequential series of results, of impending changes in clinical status. This conclusion is in keeping with the work of Shenkman, Mitsuma and Hollander (1973), who showed that TSH responsiveness correlated best with T_3 concentrations during acute propylthiouracil therapy. Similarly Hamada et al. (1978) have shown that during long-term treatment with anti-thyroid drugs the basal metabolic rate correlates best with plasma T_3.

Plasma T_3 estimations give the most clinically useful information to the physician during carbimazole therapy. Plasma T_3 and FTI estimations give further information of changing thyroidal function and in conjunction with plasma T_3 estimations this may be clinically valuable. Serial estimations give the most useful information, especially when all parameters are measured; it is the authors’ policy routinely to monitor these 3 indices during carbimazole therapy. Many clinicians and laboratory workers have been influenced by the work of Britton et al. (1975) who suggest the free thyroxine index is the measurement of choice to assess thyroid function. This is clearly not the case during carbimazole therapy and is unlikely to be true for diagnosing thyrotoxicosis since it is not always elevated in this situation. Although the costs of laboratory tests are important, the decision not routinely to measure T_3 concentrations restricts valuable clinical information, and may not actually save money (Chapman and Hayter, 1978). It is suggested that laboratories not routinely measuring T_3 should reconsider their policy. The dose schedule for carbimazole used in this series is one that is generally recommended for treating Graves’ disease, although the variation between individuals in response to carbimazole shows that no single therapeutic regimen is appropriate for all patients.

Acknowledgment
We thank Dr C. J. Hayter for his help with this study.

References

Thyroid function tests during carbimazole therapy.

D. L. Scott, D. J. Tymms, M. A. Taylor and C. Chapman

Postgrad Med J 1980 56: 838-841
doi: 10.1136/pgmj.56.662.838

Updated information and services can be found at:
http://pmj.bmj.com/content/56/662/838

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/