Potassium in the syndrome of inappropriate antidiuretic hormone secretion

P. L. Padfield  
M.B., M.R.C.P.  

J. J. Morton  
PH.D.

Department of Medicine and Medical Research Council Blood Pressure Unit,  
Western Infirmary, Glasgow G11 6NT

Summary
Serum potassium concentration was normal (≥3.6 mmol/l) in 29 of 32 patients with the syndrome of inappropriate antidiuretic hormone excess (SIADH) associated with a bronchogenic carcinoma. In 11 of the patients there was no significant change in serum potassium concentration after correction of the syndrome, by fluid restriction. Hypokalaemia is thus an uncommon finding in SIADH due to bronchogenic carcinomas.

Introduction
Descriptions of the biochemical features of the syndrome of inappropriate antidiuretic hormone (SIADH) excess (Bartter and Schwartz, 1967) emphasize an abnormality of sodium and water homoeostasis. Changes in potassium balance are rarely mentioned although a reduced total exchangeable potassium (Kₑ) was noted in the earliest reported cases (Schwartz et al., 1957) and has since been described together with hypokalaemia in a small number of cases (Jones et al., 1968; Barraclough, 1971). A more recent description of the biochemical features of SIADH (De Troyer and Demanet, 1976) recorded a high incidence of hypokalaemia. In the present authors’ experience of over 30 cases of SIADH, hypokalaemia is an uncommon finding and in view of this discrepancy they present their results.

Patient and methods
Thirty-two patients (12 female) with SIADH associated with a bronchogenic carcinoma were studied. Serum sodium and potassium (automated flame photometry), urine and plasma osmolality (freezing point depression) and plasma ADH concentration (Morton, Padfield and Forsling, 1975) were measured after an overnight fast and during recumbency in all patients. In 11 patients repeat measurements were made, under identical conditions, after a period of fluid restriction designed to correct the biochemical abnormalities of SIADH (Bartter and Schwartz, 1967). Results are expressed as mean ± s.e. mean and the significance of changes induced by fluid restriction assessed by Student’s paired ‘t’ test.

Results
Patients were aged from 49–80 years (58 ± 2). All initially presented with a serum sodium of <125 mmol/l although at the time of ADH measurement values ranged from 106–135 mmol/l (122 ± ). Plasma ADH varied widely (6–643 pg/ml) and the values overlapped the normal range (2.5–11 pg/ml) when all states of hydration were considered. Plasma ADH was, however, inappropriately high for the concurrent plasma osmolality (251 ± 3 mosmol/kg, range 218–271) (Fig. 1). Urine osmolality ranged from 276–788 mosmol/kg (583 ± 23). The mean serum potassium concentration for the group was 4.4 ± 0.1 mmol/l (3.1–5.5) and was ≤3.6 mmol/l in only 3 patients (3.1, 3.2 and 3.5 mmol/l). Patients with the lowest serum sodium concentrations were not those with the lowest serum potassium. Hyponatraemia was corrected in 11 patients by fluid restriction (118 ± 1.5 to 137 ± 0.9 mmol/l) and although plasma ADH did increase (86 ± 27 to 131 ± 80 pg/ml) there was no significant change in serum potassium concentration (4.42 ± 0.17 to 4.37 ± 0.2 mmol/l). An increase of 0.5 mmol/l was seen in only 3 patients.

Discussion
The acute administration of ADH has been shown to increase renal excretion of potassium in a variety of animal species (Heller and Stephenson, 1950; Kurtzman et al., 1975; Hiatt, Miller and Katayanagi, 1975; Barraclough, 1975) In normal man, ADH given acutely in large doses can produce a moderate increase in the rate of potassium excretion (Barraclough and Jones, 1970) but it does not alter potassium status in more prolonged studies (Stormont and Waterhouse, 1961).

SIADH represents a situation of chronic ADH excess in man, often associated with malignancy. The observations of a reduced Kₑ (Schwartz et al., 1957; Jones et al., 1968; Barraclough, 1971) have not always been confirmed (Kaye, 1966; Nolph and Schrier, 1970) and in cachectic patients could conceivably reflect a loss of muscle mass.

0032-5473/79/1000-0721 $02.00 © 1979 The Fellowship of Postgraduate Medicine
While serum potassium does not necessarily reflect overall potassium status, it is important to know whether or not hypokalaemia is likely to be present in SIADH. De Troyer and Demanet (1976) recently described 26 cases of SIADH (without ADH measurement) of varying aetiology and recorded a 62% incidence of hypokalaemia (Serum K+ < 3·6 mmol/l). Among 32 patients, the present authors have seen hypokalaemia in only 3 cases (9%) and have been unable to show consistent changes in serum potassium concentration during correction of the syndrome.

This striking difference in 2 series of comparable size may be accounted for by the different modes of presentation. None of the patients described was receiving any agents likely to affect serum potassium concentration. This was not the case in the series of DeTroyer and Demanet (1976). Of their 16 patients with hypokalaemia, 11 had either consumed ‘vast quantities’ of beer, received ‘extensive’ intravenous fluids (nature and potassium content not described) or had been given diuretics. It is known that diuretics may produce hypokalaemia and that ‘vast quantities’ of beer can provide a dilutional hyponatraemia together with profound hypokalaemia (Demanet et al., 1971; Hilden and Svendsen, 1975). Although the mechanism of the hypokalaemia is ill understood, it is produced by the beer per se, without SIADH. It seems possible, therefore, that factors other than SIADH may have contributed to the hypokalaemia in many of the patients. On the basis of these results it is concluded that unprovoked hypokalaemia is an unusual finding in SIADH associated with bronchogenic carcinoma.

References


Barracough, M.A. (1975) Potassium depletion induced by vasopressin and overhydration in the rabbit. Clinical Science and Molecular Medicine, 49, 535.


Potassium in the syndrome of inappropriate antidiuretic hormone secretion.
P. L. Padfield and J. J. Morton

doi: 10.1136/pgmj.55.648.721

Updated information and services can be found at:
[http://pmj.bmj.com/content/55/648/721](http://pmj.bmj.com/content/55/648/721)

*These include:*

**Email alerting service**
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

**Notes**

To request permissions go to:
[http://group.bmj.com/group/rights-licensing/permissions](http://group.bmj.com/group/rights-licensing/permissions)

To order reprints go to:
[http://journals.bmj.com/cgi/reprintform](http://journals.bmj.com/cgi/reprintform)

To subscribe to BMJ go to:
[http://group.bmj.com/subscribe/](http://group.bmj.com/subscribe/)