The influence of carbohydrases on the growth of fungal pathogens

in vitro and in vivo

A. M. S. Pope*
Ph.D.

D. A. L. Davies

*Searle Research Laboratories, Lane End Road, High Wycombe, Buckinghamshire

Summary
Mixtures of mycolytic enzymes from various sources release protoplasts from living fungal tissue under suitable conditions. Such enzyme mixtures obtained from Coprinus comatus (mycolase I), Physarum polycephalum (mycolase II) and Lycoperdon pyriforme (mycolase III) are of low toxicity in mammals when given parenterally and are able to cure experimental systemic fungal infections in mice when administered alone or in conjunction with normally ineffective levels of conventional antifungal drugs such as amphotericin B. The effect is believed to be due to enzymic degradation of the fungal cell wall either killing the fungus directly or enhancing activity of existing antifungal agents by increasing access to the cell interior.

Introduction
Fungal infections are a major cause of morbidity and mortality throughout the world (Ajello, 1971; Mycoses, 1975) and patients under induced immunosuppression for organ transplantation or receiving chemotherapy for cancer are susceptible to disease caused by 'opportunist' organisms such as Aspergillus and Candida spp. (Bodey, 1977; Mason et al., 1976). In spite of increasing awareness of the importance of fungal infections, there is a shortage of effective antifungal agents and those that are available have drawbacks that limit their usefulness. Amphotericin B has been the drug of choice for treatment of systemic fungal disease, but it is nephrotoxic and has other undesirable side effects (Bennett, 1974). Flucytosine is less toxic than amphotericin but emergent fungal resistance to this drug is a potentially serious problem (Utz, 1977). Newer antifungal agents such as miconazole and clotrimazole are still being evaluated.

The essence of effective chemotherapy is to exploit differences between host and pathogen so that the host is unaffected by the treatment. In fungal infections, exploitable differences are few because both host and pathogen are eukaryotes. However, an obvious difference between fungal and mammalian cells that has not been exploited is the presence in fungi of a polysaccharide cell wall that frequently contains chitin (Bartnicki-Garcia, 1968). The cell wall can also be seen as a barrier to effective chemotherapy. Certainly, Gale et al. (1975) have shown that protoplasts of C. albicans are more sensitive to amphotericin B than are intact cells. The novel approach to antymycotic therapy described in this communication exploits the cell wall by making chitin and other polysaccharides the target for enzymatic attack. Damage to or removal of the cell wall should either kill the fungus directly or, at least, enhance the activity of existing drugs by increasing their access to the cell interior. Experiments intended to test this hypothesis are described below.

Materials and methods
Organisms and media
A. fumigatus and C. albicans were obtained from the Searle culture collection. Physarum polycephalum (strain i x a7029) was obtained from Dr M. J. Carlile, Department of Biochemistry, Imperial College of Science and Technology, Prince Consort Road, London, S.W.7. Specimens of Coprinus comatus and Lycoperdon pyriforme were collected in the Chiltern beechwoods around High Wycombe and stored at -20°C until required.

A. fumigatus and Candida albicans were grown on glucose peptone medium containing (per litre) glucose 10 g, peptone 2 g, KH₂PO₄ 0.5 g, MgSO₄ 0.5 g. Universal bottles containing 10 ml of this medium were inoculated with a spore suspension of A. fumigatus and incubated for 20 hr at 24°C on a Luckham Rolamix blender. P. polycephalum was grown on the medium described by Carlile (1971).

Enzyme preparation
Enzyme mixtures were obtained from fresh or frozen specimens of Coprinus comatus and L. pyriforme either by allowing the fruit bodies to autolysic at 4°C in sterile containers for 24-48 h or by homogenizing fruit bodies in a Waring Blender for 5 min at 4°C. The homogenates obtained were expressed through muslin and the remaining solid discarded. The fluid was then centrifuged in sterile containers at 3000 g for 15 min and the pellet discarded. The supernatant contained the crude enzyme mixture which was then lyophilized.
A 'purified' extract of *L. pyriforume* was prepared by fractionating the crude enzyme mixture on Bio-Gel P200 (Bio-Rad Laboratories, Richmond, California) and recombining the retarded fractions.

A mixture of mycolytic enzymes was obtained from culture supernatants of *P. polycephalum* as follows: Cellular material was removed by centrifugation at 1600 g for 15 min at 4°C and viscous polysaccharide precipitated from the supernatant by adding one volume of cold (−20°C) 95% ethanol and centrifuging at 10,000 g for 30 min at 4°C to sediment the resultant precipitate. The clear supernatant was dialysed against water to remove the ethanol and lyophilized.

Chitinase (E.C. 3.2.11.4.) was obtained from Koch Light Laboratories, Colnbrook, Buckinghamshire, and laminarinase (E.C. 3.2.1.6.) was obtained from Calbiochem, San Diego, California.

Protoplast assay

This was carried out according to the method of Bartnicki-Garcia and Lippman (1966) using molar MgSO₄ as an osmotic stabilizer. *A. fumigatus* was the target organism and all enzymes were at a final concentration of 240 mg/l.

Experimental infection

Groups of 5 or 10 female BALB/c mice weighing 22–25 g were injected by intravenous injection with either 5 × 10⁴ spores of *A. fumigatus* or 25 × 10⁴ blastospores of *C. albicans* in saline. On one or more of the days following infection, animals were treated intraperitoneally with enzymes, conventional antifungal drugs or combinations of the two. Treatments were given in 0·2 ml of 5% dextrose or water for injection.

Table 1. Production of protoplasts from Aspergillus fumigatus

<table>
<thead>
<tr>
<th>Enzyme treatment</th>
<th>Protoplast release</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chitinase</td>
<td>+</td>
</tr>
<tr>
<td>β-1,3-glucanase</td>
<td>-</td>
</tr>
<tr>
<td>Chitinase + β-1,3-glucanase</td>
<td>++</td>
</tr>
<tr>
<td>Coprinus extract – mycolase I</td>
<td>++ + +</td>
</tr>
<tr>
<td>Physarum culture Sn – mycolase II</td>
<td>++ + + + +</td>
</tr>
<tr>
<td>Lycoperdon extract – mycolase III</td>
<td>++ + +</td>
</tr>
<tr>
<td>+</td>
<td>Protoplasts from hyphal tips only.</td>
</tr>
<tr>
<td>++</td>
<td>Protoplasts from tips and intercalary compartments.</td>
</tr>
<tr>
<td>+++</td>
<td>Many protoplasts released throughout mycelium.</td>
</tr>
<tr>
<td>++++</td>
<td>Total lysis of mycelium.</td>
</tr>
</tbody>
</table>

Results

Results for protoplast release from *A. fumigatus* are given in Table 1. Chitinase released protoplasts only from hyphal tips, whereas β-1, 3-glucanase did not liberate any protoplasts. A mixture (1:1 by weight) of the 2 enzymes was more effective than either component alone. Mycolases I, II and III (from *Coprinus comatus*, *P. polycephalum* and *L. pyriforume* respectively) were more effective than the commercial enzyme mixture, and treatment with mycolase II resulted in complete lysis of the target mycelium. Similar results have been obtained with *C. albicans* and a range of microfungi (Pope and Davies, unpublished data).

Results in Table 2 show that infected, untreated mice had a mean survival time of 13·5 days (Table 2 a). Under the conditions of the test, a single treatment with the maximal sub-toxic dose of amphotericin B or nystatin significantly prolonged survival, but did not cure the animals (Table 2 k, m). Animals were cured by mycolases alone (Table 2 d, j) but not by the commercial enzyme mixture (Table 2 b). Infections were also cured by the synergistic effect of mycolases and conventional antifungal agents at doses of both components that were ineffective when administered alone (Table 2 o, p, q, r, s). Mice that had been immunosuppressed with rabbit anti-mouse thymocyte globulin (ATG) were also cured by combined therapy, suggesting that a full immune capacity is not an essential prerequisite for the effect. Similar results have been obtained in experimental candidiasis and in the treatment of dermatophyte infection in guinea-pigs (Pope and Davies, unpublished data).

Acute toxicity tests with mycolases given intravenously or intraperitoneally in mice gave an LD₅₀ of 15–20 mg/mouse (600–700 mg/kg).

Discussion

The fungal cell wall has been recognized by other workers as a potential target for therapeutic attack. Specific inhibitors of chitin synthetase, the polyoxins, have been developed (Endo, Kakiki and Misato, 1970), but although these compounds are effective *in vitro*, they have not proved useful clinically. Chitinases occur widely in nature (Stirling, Cook and Pope, 1979) and, although their effects on fungal cell walls *in vitro*, alone and in conjunction with other enzymes are well known, as far as the authors are aware there have been no *in vivo* studies. Miura (1954) suggested that chitinase might be used for treating dermatophyte infections, but did not demonstrate mycocidal activity. The results show that chitinase alone is only slightly mycolytic and requires the presence of other enzymes before its full potential can be realized. The increased mycolytic activity of mycolases compared with the commercial enzyme mixture is almost certainly attributable to the wider range of carboxydrases they contain. Enzyme profiles for mycolases will be published elsewhere.
Mycolases have been shown to be effective in both immune competent and immunosuppressed animals alone and in combination with existing antymycotic drugs (Davies and Pope, 1978). The latter approach allows reduction in drug dosage and associated toxicity. In vitro tests suggest that addition of mycolase gives a 5- to 10-fold reduction in the MIC of a range of antymycotic drugs. This is probably due to the increased access to the cell interior through the enzyme-damaged walls.

Mycolases have a wide spectrum of antymycotic activity, are of low toxicity and there would seem to be only a remote chance of fungi developing resistance to their attack. The authors believe that mycolases hold considerable promise as an alternative to existing therapy for both systemic and superficial fungal infections.

References

The influence of carbohydrates on the growth of fungal pathogens in vitro and in vivo.
A. M. Pope and D. A. Davies

Postgrad Med J 1979 55: 674-676
doi: 10.1136/pgmj.55.647.674

Updated information and services can be found at:
http://pmj.bmj.com/content/55/647/674

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/