SESSION I

BIOCHEMISTRY AND PATHOLOGY OF THE ARTERIAL WALL

Chairman: Dr K. P. Ball

Essential fatty acids and the vulnerability of the artery during growth

M. A. Crawford
B.Sc., Ph.D.

A. G. Hassam
B.Sc., Ph.D.

J. P. W. Rivers
B.Sc.

Department of Biochemistry, Nuffield Laboratories of Comparative Medicine, Institute of Zoology, The Zoological Society of London, Regent's Park, London NW1 4RY

Summary
Essential fatty acids not only control blood lipid levels, but are the precursors of prostaglandins responsible for regulation of platelet aggregation. Dietary deficiency of essential fatty acids may play an important role in the development of coronary heart disease, particularly during the early growth period.

Introduction
The discussion on the role of diet in the aetiology of coronary heart disease has tended to focus on the negative: that is, on the allegedly harmful aspects of the diet such as saturated fats, cholesterol, sucrose or purified carbohydrates. The underlying atherosclerosis can be considered as a degenerative disease, strongly linked with environmental factors, which ends in coronary occlusion in adulthood. Yet little attention has been given to the positive nutrients on which the healthy growth of the artery must depend.

Sinclair, as early as 1968, suggested that an essential fatty acid deficiency was responsible for atherosclerosis, yet few of the more recent expert committee reports on the prevention of coronary heart disease (CHD) mention the function of the essential fatty acids (EFA) in the context of arterial growth and health.

In practice, the growth of every cell membrane in the body needs EFA which cannot be synthesized in the body and must be supplied in the diet in the same way as essential amino acids.

In addition to their structural importance, EFA have a wide range of physiological functions. They control blood lipid levels and are the precursors of the prostaglandins responsible for the regulation of platelet aggregation.

In the experimental approach to atherogenesis, the dietary fats have been supplied as saturated fats or cholesterol, but these diets have also been low in EFA. This approach to atherogenesis has neglected the simultaneous manipulation of dietary essential fats which are needed for proper growth and tissue repair.

First to be discussed will be essential fatty acids which could be important factors in the growth of the artery and in thrombus formation. It will be suggested that, as with other nutritional problems, the period when the artery is most sensitive to dietary distortion is during its period of growth.

Function of essential fatty acids and their metabolism
The EFAs are important for growth and development because in combination with protein they are used in cell membranes and cell structures in every tissue in the body. The EFAs are the essential components of structural lipid, the invisible fats described by the early histologists. After protein, structural
lipid is the most important component of all soft tissues, except in the nervous system where there is more lipid than protein (Crawford and Sinclair, 1972).

Structural lipids contain phospholipid and cholesterol. Triglycerides are mainly employed as energy stores. The fatty acid composition of the phospholipid varies in different tissues (Carney and Walker, 1971; Sun, Go and Sun, 1974; Crawford et al., 1976b). The fatty acid composition of triglyceride esters and of phospholipids can be modified by dietary manipulation. However, the fact that the phospholipids change more slowly suggests some homeostatic control.

There are two positions for fatty acids in the phospholipid molecules. The first is usually occupied by a saturated and the second by a polyunsaturated fatty acid (PUFA). If an excess of saturated fatty acids is contained in the diet they can compete with the PUFA and force their way into the second position, and so alter the physical properties of the phospholipid and hence of the membrane itself (Van Golde, Pierson and van Deenan, 1968). An increase in dietary saturated fat increases the basic requirement for essential polyunsaturated fat. (Dhopheshwarkar and Mead, 1961).

Cholesterol has only one position available for esterification and up to 70% of the fatty acids used for making its esters may be polyunsaturated; in man, linoleic acid is the major fatty acid found. During the early development of atheromatous lesions cholesterol esters have a low linoleic acid content (Bottcher, 1964; Smith, 1965).

The triglycerides have three positions available for esterification. When triglycerides contain a PUFA it is usually in the middle position while the other two contain a saturated fatty acid. The fatty acid composition of triglyceride varies with the diet but seldom has a ratio of more than one PUFA to two saturated or non-essential fatty acids. Triglycerides have a greater affinity for non-essential, and phospholipids for essential fatty acids (Sinclair, 1975); EFAs are taken up preferentially by the structural lipids.

In addition to their role in cell structures, EFAs also give rise to prostaglandins, substances with a wide range of physiological action at low concentrations (van Dorp, 1975). That is, EFA have both a structural and a physiological function.

The structural function of the EFA is largely dependent on their chain lengths, degree of unsaturation and position of the double bonds. The higher the degree of unsaturation, the lower will be the melting point of the fat. By contrast, saturated fatty acids give rise to hard or rigid fats with high melting points (Chapman, 1972). Consequently membrane or tissue fats can be either rigid, as in the myelin sheath (Baumann et al., 1972); or elastic, as in the arterial wall, and these are associated with either a low or high content of PUFA.

Linoleic and α-linolenic acids are the two parent EFA and are metabolized by desaturation and chain
Vulnerability of the artery during growth

151

elongation to their long-chain derivatives which include arachidonic and docosahexaenoic acids (Fig. 1). Linoleic and α-linolenic acids have a chain length of eighteen carbons with two or three double bonds. Their long-chain derivatives have carbon chain lengths of 20–22 carbons with four, five and six double bonds. These long-chain derivatives are important because they are the principal fatty acid constituents of membrane systems such as those of the nervous system, the vascular endothelium and platelets, and also because they are the direct precursors of prostaglandins (van Dorp et al., 1964).

The significance of rate limitations

Both in vivo and in vitro studies have shown that desaturation reactions impose limitations on the rate of conversion of the parent EFA to their higher homologues (Hassam, Sinclair and Crawford, 1975; Marcel, Christiansen and Holman, 1968). The rate limitations are so profound that in the rat in vivo, specific activity studies have shown that only one-thirtieth of radioactively-labelled linoleate appears as arachidonate (Table 1) in 24 hr (Hassam and Crawford, 1976).

Table 1. Recovery of orally administered isotope in the arachidonic acid fraction of developing rat brain phosphoglyceride (Hassam and Crawford, 1976)

<table>
<thead>
<tr>
<th>Isotope administered</th>
<th>Radioactivity recovered from brain phosphoglyceride arachidonate fraction (as percentage of administered dose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1-14C]-18 : 2ω6</td>
<td>0-06 ± 0-004</td>
</tr>
<tr>
<td>[1-14C]-18 : 3ω6</td>
<td>0-16 ± 0-004</td>
</tr>
<tr>
<td>[1-14C]-20 : 3ω6</td>
<td>0-40 ± 0-03</td>
</tr>
<tr>
<td>[1-14C]-20 : 4ω6</td>
<td>2-00 ± 0-03</td>
</tr>
</tbody>
</table>

It is likely that these rate limitations control the synthesis of arachidonic and docosahexaenoic acids for cell structures and for prostaglandin synthesis. There is evidence that the desaturation is regulated by hormones such as insulin and thyroxine (Brenner, 1974).

These findings are not only of relevance to dietary consideratations in relation to thrombosis but also provide added strength to the view that the rate limitations in the synthesis of the long-chain polyunsaturated fatty acids may provide a regulatory mechanism in man for platelet aggregation.

Vascular endothelium and prostaglandin production

In addition to the role of prostaglandins in platelet aggregation, Moncada et al. (1976) reported that the vascular endothelium synthesises a different prostaglandin (PGI2) which prevents platelets from sticking to the walls of the artery and releases those which have become adherent. If the arterial endothelium is damaged, local synthesis of PGs cannot occur and a mural thrombus is likely.

Hence, the specific prostaglandin functions in relation to the vascular system are relevant to homoeostasis and repair and probably to the events in coronary thrombosis.

Table 2. Long-chain polyunsaturated fatty acid content of the ethanolamine phosphoglyceride fraction in the human aorta endothelium and platelets

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Aorta endothelium (g/100 g fatty acid methyl esters)</th>
<th>Platelet</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 : 3ω6</td>
<td>0-9</td>
<td>1-0</td>
</tr>
<tr>
<td>20 : 4ω6</td>
<td>26-0</td>
<td>33-3</td>
</tr>
<tr>
<td>22 : 4 + 22 : 5ω6</td>
<td>9-9</td>
<td>3-6</td>
</tr>
<tr>
<td>20 : 5ω3</td>
<td>2-6</td>
<td>1-8</td>
</tr>
<tr>
<td>22 : 5ω3</td>
<td>5-7</td>
<td>4-2</td>
</tr>
<tr>
<td>22 : 6ω3</td>
<td>11-0</td>
<td>5-6</td>
</tr>
</tbody>
</table>

The long-chain PUFA in arterial endothelium and platelet membranes

The arterial endothelium contains high concentrations of long-chain PUFA in the phospholipids (Table 2). Comparative studies have shown that the arterial phospholipids have higher concentrations of arachidonic acid and lower concentrations of linoleic acid than those in muscle or liver (Crawford and Woodford, 1971). Similarly, the amounts of arachidonic acid in platelets are impressive. Damage to the membrane causes release of large amounts of arachidonic acid, which results in platelet aggregation. This mechanism is physiologically important both in haemorrhage and in thrombosis.

The sensitivity of the vascular system during early development

Experimental atherogenic diets in which the fat is provided as cholesterol or saturated fat are deficient in EFA. Excess saturated fat competes with EFA thus exacerbating the effect of EFA deficiency. These points were made by Sinclair (1968). During early development of the child, substitution of cow’s milk for human milk results in a diet low in EFA, which is associated with changes in blood chemistry. Cow’s milk has more protein and minerals to meet the need for body and skeletal growth in the calf; human milk has more EFA (Crawford et al., 1976b).

Babies fed on cow’s milk do not maintain their EFA balance in the same way as do breast-fed babies (Pikaar and Fernandes, 1966; Sanders and Naismith, 1976; Crawford, Hassam and Hall, 1977).
The human fetus accumulates high concentrations of arachidonic and docosahexaenoic acids which, after birth, soon fall to adult levels. However, in cow’s-milk-fed infants the levels of these fatty acids fell well below those of breast-fed infants or those expected in adults (Table 3). Although there was no clinical evidence of EFA deficiency in these infants, in view of the concern that arterial changes may occur in infancy, the lipid status of the artificially-fed infant should be examined by more detailed research.

Blood cholesterol and triglycerides

In communities with a low incidence of CHD, low levels of blood lipids are found (Shaper and Jones, 1962). Louw, du Plessis and Van den Berg, 1969, studied blood cholesterol levels in Bantu children and found them to be lower than those in South African children of European descent. The present authors found no difference in blood cholesterol levels in East African infants compared with European infants, but they could be clearly distinguished by the age of 7–8 years (Table 4).

References

Vulnerability of the artery during growth

Essential fatty acids and the vulnerability of the artery during growth.

K. P. Ball, M. A. Cranford, A. G. Hassam and J. P. Rivers

Postgrad Med J 1978 54: 149-155
doi: 10.1136/pgmj.54.629.149

Updated information and services can be found at:
http://pmj.bmj.com/content/54/629/149

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/