Oxyphenbutazone-induced goitre

R. J. M. LANE
B.Sc., M.B., B.S., M.R.C.P.

F. CLARK
M.B., B.S., F.R.C.P.

J. K. McCollum*
F.R.C.S.

Departments of Medicine and *Surgery, Newcastle General Hospital, Newcastle upon Tyne

Summary
A woman who had taken oxyphenbutazone for 4 years because of back pain presented with goitre and hypothyroidism. This was shown to be due to an organification defect, caused or aggravated by oxyphenbutazone.

Introduction
An adverse effect of some drugs lies in their goitrogenic action (de Groot and Stanbury, 1975). Phenylbutazone has this property and several reports of goitre and hypothyroidism associated with its administration have been published (Morgans and Trotter, 1955; Benedek, 1962; Kleint, 1971; Ruiz-Torres, 1971; Vermulen and Schoot, 1972). It is not, however, widely appreciated that one of its major metabolites, oxyphenbutazone (Tanderil®, Geigy) is also goitrogenic (Norrell, 1967; Miracco and Orlando, 1972). The following case of oxyphenbutazone-induced goitre is the first to be reported in Britain.

Case history
A 63-year-old woman was referred to surgical outpatient with a 2-month history of progressive thyroid enlargement and symptoms of hypothyroidism. On examination, she had a large, firm, vascular, nontender goitre and was clinically hypothyroid. There was no family history of thyroid disease and she ate a normal, balanced diet. She gave a long history of low back pain and 5 years previously she had taken phenylbutazone and dihydrocodeine for about 1 year. She had subsequently been found to have marked hyperuricaemia and had been put on allopurinol 100 mg t.d.s. and oxyphenbutazone 100 mg t.d.s., which she had taken regularly for 4 years. Thyroid function tests confirmed hypothyroidism (see Table 1) and no anti-thyroid antibodies were detectable.

Assuming iodine deficiency to be unlikely, the results suggested that the hypothyroidism was due to an organification defect. This was confirmed by a perchlorate discharge test (see Fig. 1). Uptake of 131I was very high (32% at 30 min) but following the administration of potassium perchlorate at 40 min there was a discharge of isotope from the gland, so that at 70 min, only 28% of the administered radioactivity remained in the thyroid.

All medication was withdrawn and over the next 4 weeks the patient became clinically and biochemically euthyroid (PBI 549 nm/l, TSH 4-6 nu./l). Twenty-one months later she remained euthyroid and the thyroid...
gland was no longer visible or palpable (PBI 571 nm/l, Thyropac-3 111%. TFI 514, TSH 1·7 mu./l). The oral perchlorate discharge test was repeated; 131I uptake had fallen to 13% at 30 min but administration of potassium perchlorate again caused a discharge of isotope from the gland at about the same rate as before, indicating persistence of the organification defect.

Discussion

Phenylbutazone is a potent anti-rheumatic agent having analgesic, sodium-retaining and uricosuric properties. It is metabolized, by hydroxylation in the liver, to two compounds, one of which is oxyphenbutazone (Burns et al., 1960).

Since Morgans and Trotter’s first report of phenylbutazone-induced goitre in 1955, several mechanisms have been proposed to explain its action on thyroid function, including iodine binding (Green et al., 1953) and displacement of thyroid hormone from binding proteins with subsequent TSH suppression (Melholm-Hansen, 1962) but it is now agreed that the action is on the thyroid gland itself causing an organification defect, reduced thyroid hormone secretion and consequently excessive TSH secretion and goitre formation (Keinsorg and Kruskemper, 1955; Hillman, 1957; Kruskemper, 1959; Abiodun et al., 1973).

In 1967, Norrell described a case of goitre and hypothyroidism due to an organification defect, caused by oxyphenbutazone. This phenomenon has been reported only once since, to our knowledge, and in that case the patient was also receiving para-aminosalicylic acid, itself a goitrogen. Experiments have shown that the action of oxyphenbutazone on the thyroid is similar to that of phenylbutazone (Eger and Fernholz, 1965; Hoffman, 1967).

The cause of the persistently abnormal perchlorate discharge test following withdrawal of oxyphenbutazone in the present case remains conjectural; in Norrell’s case, no organification defect persisted. The present patient was taking allopurinol in addition to oxyphenbutazone but no anti-thyroid activity has been ascribed to the drug. Other possibilities include a pre-existing organification defect aggravated by administration of oxyphenbutazone or persistence of the metabolic defect caused by the drug despite its withdrawal.

Acknowledgments

We thank Professor Reginald Hall for TSH measurements and Dr D. S. Archer and Dr P. D. Fowler of Geigy Pharmaceuticals Ltd, for information on Butazolidin and Tanderil.

References

Coeliac disease and goitre

T. J. ROBINSON
M.D., M.R.C.P.

Craigavon Area Hospital

Summary
Two cases of coeliac disease associated with thyroid enlargement are presented. One had a large simple adenomatous goitre which was removed surgically and the other had histological confirmation of lymphadenoma (Hashimoto’s disease).

Introduction
There have been a number of recent reports of cases in which coeliac disease has been associated with another disease complex. Thus coeliac disease has been reported in association with diabetes (Walker-Smith, Vines and Grigor, 1969), Sjögren’s syndrome (Maclaurin, Matthews and Kilpatrick, 1972; Pittman and Holub, 1965), thyroiditis (Maclaurin et al., 1972) and bird fancier’s lung (Berrill et al., 1975). Two cases in which thyroid disease was associated with coeliac disease are now described.

Case 1
A 55-year-old unmarried woman who was born and lived all her life in an area endemic for goitre was admitted to hospital with weakness, loss of appetite, diarrhoea and weight-loss. She had had a large multinodular goitre for many years.

On examination she was in mild congestive heart failure with fast atrial fibrillation. She was clinically anaemic and investigations showed Hb 4 g/100 ml; WCC 1900/mm³; platelet count 4-6×10⁴/mm³; reticulocyte count 0-5%; film reported as showing macrocytosis; protein-bound iodine 460 mmol/l (normal range 300-600); bone marrow showed a megaloblastic anaemia; serum vitamin B₁₂ 30 pg/ml (normal range 150-900); serum folate acid 2-3 ng/ml (normal range 3-5-24-0); serum carotene 15 mg/100 ml (normal 60-120); faecal fats were normal; d-xylene excretion was only 1-6 g of a 25-g dose in 5 hr; jejunal biopsy showed an atrophic mucosa with prominence of lymphoid tissue and subtotal villous atrophy.

A diagnosis of coeliac disease was made and she was started on a gluten-free diet. With treatment of the anaemia her general condition improved sufficiently for her to have a partial thyroidectomy and a total of 515 g of thyroid tissue was removed which was shown on histology to be an adenomatous...
Oxyphenbutazone-induced goitre.

R. J. Lane, F. Clark and J. K. McCollum

Postgrad Med J 1977 53: 93-95
doi: 10.1136/pgmj.53.616.93

Updated information and services can be found at:
http://pmj.bmj.com/content/53/616/93

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/