The results of 100 small tissue biopsies of testis in male infertile patients

R. SCOTT
M.B., Ch.B., F.R.C.S.

J. SINCLAIR
M.B., Ch.B., F.R.C.S.

A. ROURKE
M.B., Ch.B.

S. CHOWDHURY
F.R.C.S.

A. YATES
M.B., Ch.B., F.R.C.S.

J. SHABA*
M.B., Ch.B., M.R.C.Path.

Introduction
Certain patients require testicular biopsy if rational drug therapy is to be employed in the treatment of male infertility (Markewitz et al., 1968; Girgis et al., 1969). Advances in hormone therapy can be expected to develop parallel with research into drugs that regulate the reproductive cycle in women. The histological findings in 100 small tissue biopsies undertaken in the Department of Urology, Glasgow Royal Infirmary, between 1970 and 1972 are presented. The results are related to semen analysis and aetiological factors.

Materials and methods
Patients referred to the male infertility clinic were examined with respect to general physical state, genital development and serology. A seminal specimen was obtained by coitus interruptus and if two consecutive counts were below 20×10^4 sperms/ml or had less than 45% motile sperms at 2 hr, the patient was advised to have a testicular biopsy. Under general anaesthesia, the scrotal skin was stretched over the testis and a stab biopsy undertaken (Charny, 1956), the specimen being fixed immediately in Bouin’s fluid. Infertile patients undergoing operation for varicocele, hydrocele or undescended testis were treated similarly. If the biopsy report revealed sloughing of the germinal epithelium with lumenal blockage the patients were treated with sublingual methyl testosterone 15 mg t.i.d. for 3 months and a further seminal analysis undertaken. Patients with azoospermia who had, on biopsy, evidence of normal sperm production were considered for epididymovasostomy. Those with germinall cell arrest were referred to the Endocrine Clinic for gonadotrophin assays and therapy if indicated.

Materials and methods

Requests for reprints: Mr R. Scott, F.R.C.S., Department of Urology, Glasgow Royal Infirmary.

Materials and methods

Summary
The value of testicular biopsy in male infertility has recently been emphasized by Meinhard, McRae and Chisholm (1973), and the present authors agree with them that a biopsy is essential for the following reasons: (1) to establish a firm diagnosis; (2) to rationalize therapy on the basis of histological findings; (3) new developments in drug therapy and electronmicroscopic techniques will help to clarify many areas of doubt and uncertainty in this difficult field; (4) the diagnosis of ‘sloughing’ by itself may mask changes in germinal cell development which may be amenable to hormone therapy.

Results
Histological findings
The histological findings of the 100 consecutive biopsies are shown in Table 1. The failed biopsies occurred in a patient with small testes, the specimen containing only epididymal tissue.

Of the seventy-six patients in whom sloughing was reported in the testicular biopsy, twenty-five were noted to have associated disorderly maturation.

There were four patients with maldescended testes. In three who underwent orchidopexy the biopsy of the contralateral testis in which there was no history of delayed descent showed the ‘Sertoli Cell Only’ appearance, while in the fourth, who had an orchidectomy, the contralateral testis showed the features of sloughing.

Findings on seminal analysis
Twenty-nine patients of the series had azoospermia, but in only two of these was the histology normal. Five of this group had the Sertoli Cell Only appearance, one germinal cell arrest, three Klinefelter’s syndrome. The remaining eighteen had sloughing of varying degree which in five cases was associated with disorderly spermatogenesis and in a further five with spermatogenic arrest. The seminal
analysis of the seventy-six patients with sloughing is shown in Table 2. Forty-three had sperm densities below 20×10^6/ml, but none of the seventy-six had a motility figure of greater than 50% at 2 hr.

Possible aetiological factors in the patients with germinal cell arrest and the Sertoli Cell Only syndrome are shown in Tables 3 and 4 respectively. In the total series, twenty-six patients gave a past history of mumps and, of these, four had the Sertoli Cell Only syndrome and four showed the features of germinal cell arrest. Seven of this group presented with azoospermia. The remaining eighteen demonstrated sloughing, which in six cases was accompanied by disorderly spermatogenesis.

Results of subsequent treatment

Epididymovasostomy was offered to the two azoospermia patients with normal histology. One refused and the other still had azoospermia following surgery. A further three patients with mild sloughing and azoospermia were offered surgery and unsuccessful epididymovasostomy carried out in two, the third on exploration having an apparently patent vas deferens. The primary management of the eight patients with germinal cell arrest was to treat those with histological evidence of some sloughing with testosterone. Two of the remaining three were treated with human menopausal chorionic gonadotrophin (HMG) but neither of these patients showed any subsequent increase in sperm density, although the motility figures increased from an average of 2% to 38% and 0% to 21% respectively.

A variable sized varicocele was noted in fourteen patients, five of whom underwent operation where it was thought to be a significant factor. Of these five, two had a subsequent 3-month course of methyl testosterone. The sperm density and motility of the group is shown in Table 5. One of the fourteen patients had azoospermia and testicular biopsy showed sloughing with tubular hyalinization. He received no therapy. A further patient had a severe degree of maturation arrest and received a course of gonadotrophin which increased motility of the spermatozoa from 0 to 21% but did not alter his sperm density. The remaining seven patients all showed sloughing on biopsy and as the varicocele was small, were treated with methyl testosterone alone. Two of the seven showed associated disorderly spermatogenesis, and one a minor degree of maturation arrest.

Discussion

Testicular biopsy is being re-evaluated as a step in the investigation of infertility (Garduno and Mehan, 1970; Nelson, 1952; Dubin and Hotchkiss, 1969; Girgis et al., 1969; Markewitz et al., 1968). The criteria used in selecting patients for biopsy must be carefully defined (Garduno and Mehan, 1970). The Sertoli Cell Only appearance, characterized by small tubules without germinal epithelium and without peritubular fibrosis or an increase in Leydig cells, is thought to be congenital in many cases, although four of the twelve cases gave a past history of mumps. A further four had a past history of undescended testis and it may be that the normally placed contralateral testis may also be histologically abnormal (Table 4). No known treatment can be of any avail in such patients.

Germinal cell arrest usually occurs at the primary spermatocyte stage, the seminiferous tubules being otherwise normal. The aetiology of this condition is ill understood although a previous history of pyrexial
illness or working in a hot environment have been
incriminated (Nelson, 1953). The primary spermato-
cytes often slough into the lumen, and this pheno-
menon was seen in five of the eight cases. Two cases
without sloughing were given treatment with HMG,
the follicle stimulating hormone (FSH) of which has
been shown to assist maturation of spermatids to
fully mature spermatozoa (Gemzell and Kjessler,
1964). The transformation of spermatagonia to
spermatis is considered by some authorities to be
autonomous. Macleod, Pazianos and Ray (1964),
however, feel that this step in maturation is activated
by HMG. Mroueh, Lytton and Kase (1967), investi-
gating nineteen males with oligospermia, found a
doubtful improvement in the count and motility in
only two cases after HMG, although the seminal
fluid volume was increased. They assessed steroid
excretion by measuring urinary gonadotrophic
hormones, testosterone, 17-ketosteroids and 17-
ketogenic steroids and total urinary oestrogens. They
found that enhanced excretion of these products was
not accompanied by improved tubular function.
Only one patient in the present series was found to
have an increase in the number of spermatids and
spermatozoa following HMG.

Sloughing of the germinal epithelium is charac-
terized by the presence of immature spermatogenic
cells in the luminal contents. Disturbance of orderly
spermatogenesis in the basal cell layers may be found
accompanying this sloughing. An increase in peri-
tubular fibrosis and intercellular collagen is not
necessarily a feature of this condition. Some pre-
cursors do mature to sperm, and account for the
spermatozoa in the ejaculate. Patients in the present
series, with sloughing in the testicular biopsy, were
usually treated by methyl testosterone administra-
tion in an attempt to suppress sperm production so
that continued ejaculation allowed the slough to
clear from the lumen of the tubules. It was hoped

that a ‘rebound phenomenon’ (Heller et al., 1950)
would occur but this rarely happened. At best, only
37% of patients can be expected to produce a
pregnancy following methyl testosterone therapy
(Heckel and McDonald, 1952; Harvey and Jackson,
1957). In the present series, fifty-four were treated
with 5 mg methyl testosterone, thrice daily for 3 months.
The improvement in density and motility was minimal
at 3 months. Pre-treatment values improved by an
average of only 2×10^8 sperm/ml in this time.
Motility improved by 4% on average. Only two
reported a pregnancy within 6 months of therapy but
many defaulted or became lost to follow-up. Spence
and Medvei (1959) emphasized that a rebound
phenomenon does not always occur, and that per-
manent suppression of spermatogenesis may ensue,
although this was not found in the present series.
Rowley and Heller (1972), however, emphasized the
importance of achieving complete azoospermia with
methyl testosterone in the absence of urinary
gonadotrophins. He found complete recovery to
pre-treatment levels by 6–18 months, and noticed
that conception often occurred before this was
achieved. Girgis et al. (1969) in more than 800
patients considered the cause of azoospermia to be
functional rather than mechanical in 46% of cases.
In the present series, however, only two of twenty-
ine patients were found to have normal histological
features. Twenty-eight of the twenty-nine, or almost
100% were found to have a functional dysplasia of
the germinal epithelium.

Tulloch (1952) first demonstrated hypospermato-
genesis with maturation arrest in patients with
varicoceles, and Scott (1958; 1961) showed that this
was the commonest finding on testicular biopsy.
Etribly et al. (1967) found that thirty-two (50%) of
a series of sixty-four cases had counts below 1000/ml,
while the other thirty-two (50%) had a variable
oligospermia. On testicular biopsy of the latter,

Table 5. Patients with varicocele who underwent ligation

<table>
<thead>
<tr>
<th></th>
<th>Pre-treatment density (10^6/ml)</th>
<th>Postoperative density (10^6/ml)</th>
<th>Pre-treatment motility (%)</th>
<th>Postoperative motility (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No androgen therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>15.5</td>
<td>9.7</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>(2)</td>
<td>2.1</td>
<td>4.5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(3)</td>
<td>0</td>
<td>3.5</td>
<td>0</td>
<td>3.3</td>
</tr>
<tr>
<td>Androgen therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>2.1</td>
<td>14.7</td>
<td>23</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60 (after androgen therapy)</td>
<td></td>
<td>50 (after androgen therapy)</td>
</tr>
<tr>
<td>(5)</td>
<td>33.6</td>
<td>14.1</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>62 (after androgen therapy)</td>
<td></td>
<td>31 (after androgen therapy)</td>
</tr>
</tbody>
</table>

...
eighteen were found to have germinal cell arrest, sixteen at the spermatid stage, and two at the primary spermatocyte stage. In the present series, only two of fourteen patients (14%) showed maturation arrest. In the former series eleven (16%) showed sloughing with disorderly spermatogenesis as compared with two (14%) in the small series. Three of the patients with varicocele had the Sertoli Cell Only syndrome while there was none in the larger series.

Testicular size
Twenty of the 100 patients were noted to have small testes, sixteen being bilateral. In fifteen, the testicular biopsy revealed sloughing which in four cases was accompanied by disorderly spermatogenesis, and two of these four had one small testis only. Six of this group were treated with methyl testosterone, and in only two was there marginal improvement. Five of these patients were azoospermic. Four of the patients with bilateral small testes had the Sertoli Cell Only syndrome and one patient had Klinefelter's syndrome.

References

The results of 100 small tissue biopsies of testis in male infertile patients.
R. Scott, J. Sinclair, A. Rourke, S. Chowdhury, A. Yates and J. Shaba

Postgrad Med J 1976 52: 693-696
doi: 10.1136/pgmj.52.613.693

Updated information and services can be found at:
http://pmj.bmj.com/content/52/613/693

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/