Verapamil and the myocardium

WINIFRED G. NAYLER
D.Sc.
Cardiothoracic Institute,
2 Beaumont Street,
London, W.1

DENNIS KRIKLER
M.D., F.R.C.P., F.A.C.C.
Cardiovascular Division, Royal Postgraduate
Medical School, Hammersmith Hospital,
London, W.12

Summary

Although many of the drugs which recently have been
developed for use in relieving angina pectoris display
β-adrenoceptor blocking activity this property cannot
be essential, because verapamil relieves angina pectoris
without blocking the cardiac β-adrenoceptors. Like
propranolol, verapamil slows the heart and reduces
both the peak tension developed during systole and
the rate at which that tension is developed. Verapa-
mil further resembles propranolol in that it improves
cardiac efficiency, reduces the oxygen requirement of
the heart and abolishes certain arrhythmias. Verapa-
mil differs from propranolol, however, in that it does
not antagonize the cardiac β-adrenoceptors and it
dilates the coronary vessels. Verapamil probably owes
its activity to its ability to interfere with the inwards
displacement of calcium ions across cardiac cell
membranes.

Many of the drugs which have been developed during
the past decade for use in the relief of angina pectoris
have proved useful for the treatment of cardiac arrhythmias. Some of these compounds, e.g. pro-
pranolol, oxprenolol and pindolol, exhibit β-adreno-
ceptor blocking activity but others—for example
veroamil (Nayler et al., 1968a; Livesley et al., 1973;
Krikler, 1974) do not. The mode of action of these
newly developed drugs is perhaps most easily ex-
plained if it is discussed in terms of the sequence of
events which are involved in the contraction-
relaxation cycle of cardiac muscle (Langer, 1968;
Nayler, 1974) as well as in terms of the main deter-
minants of myocardial oxygen consumption (Sarnoff
et al., 1958; Braunwald, 1971). This in turn requires
an understanding of the subcellular organization of
the cardiac muscle cell.

In cardiac as in skeletal muscle the fundamental
unit of muscle structure is the sarcomere, defined as
the distance between two adjacent Z bands. Z bands
are easily visible in the electronmicrograph shown
in Fig. 1. Within each sarcomere the contractile pro-
eins are arranged to form a regular, but interdigitat-
ing array of thick (myosin) and thin (actin) filaments
(Huxley, 1969). Contraction involves the regulated
displacement of the actin along the relatively thicker
myosin filaments such that whilst the length of each
actin and each myosin filament remains constant the
distance between adjacent Z bands changes. The dis-
placement of the actin along the myosin filaments is
a complex process (Katz, 1971) requiring the sequen-
tial formation and activation of cross-bridges between
the adjacent filaments. Energy for the formation and
activation of these cross-bridges is derived from the
hydrolysis of adenosine triphosphate (ATP). The
relevant ATPase enzyme forms part of the myosin
molecule. It is Mg²⁺-dependent and is activated by
both actin and Ca²⁺. The Ca²⁺-induced activation of
the myosin ATPase enzyme is indirect and com-
plex. It involves an interaction between Ca²⁺ and
the regulatory proteins (Katz, 1971; Nayler, 1974)
within the myofilaments, as shown schematically in
Fig. 2.

When Ca²⁺ is either absent or its concentration
falls below a critical level these regulatory proteins
(troponin and tropomyosin) prevent actin from
activating the myosin ATPase enzyme (Ebashi and
Endo, 1968). When sufficient Ca²⁺ becomes avail-
able, however, then this inhibiting effect of the
regulatory proteins is suppressed and accordingly
the actin-induced activation of the myosin ATPase
enzyme can proceed. Now, provided that sufficient
ATP is available for hydrolysis, that the myosin
ATPase is active and that its various co-factors,
including Mg²⁺, are present, then, as shown schem-
tically in Fig. 3, the transition from diastole to systole
depends simply upon an increase in the intracellular
availability of Ca²⁺. When the intracellular Ca²⁺
concentration exceeds a critical level of approximat-
ely 10⁻⁷M the rate at which the myosin ATPase enzyme
hydrolyses ATP is probably just sufficient (Weber
and Herz, 1963) to provide the high energy phosphate
bonds needed to facilitate cross-bridge formation
and activation. Under conditions such as these the
Fig. 1. Electromicrograph of part of the heart muscle cell. Note the Z bands, actin and myosin filaments, the sarcoplasmic reticulum and the cell membrane. (× 28,000.) Z = Z band; M = myosin; A = actin; SR = sarcoplasmic reticulum; CM = cell membrane.

Contractile proteins (Actin + Myosin) + Ca$^{2+}$-sensitive regulatory proteins (Troponin + Tropomyosin) + ATP + Excitation

Actin-induced activation of the myosin ATPase enzyme

ATP \rightleftharpoons ADP + P + Energy

Activation of cross-bridges between actin and myosin

Contraction

Fig. 2. Schematic representation of the events involved in the activation of contraction.
rate at which the muscle develops tension and undergoes shortening depends largely upon the intracellular availability of Ca\(^{2+}\), because this regulates the rate of ATP hydrolysis. The transition from systole to diastole reflects the reverse phenomenon—that is a reduction in the intracellular availability of Ca\(^{2+}\) (Schwartz, 1971) such that the regulatory proteins, troponin and tropomyosin, can re-exert their inhibitory effect on the actin-reduced activation of the myosin ATPase enzyme.

Because of the relative importance of the role which Ca ions play in regulating the transition from diastole → systole → diastole, shown schematically in Fig. 3, it is not surprising to find that considerable effort has been expended in experiments aimed at establishing how the intracellular availability of Ca\(^{2+}\) is regulated to facilitate either contraction or relaxation as exhibited in the cardiac cycle. These studies have shown that resting heart muscle cells have a potential difference of approximately 90 mV, the inside being negative with respect to the outside, and that the reversal of this transmembrane potential difference, such as that which (Fig. 4) occurs during the rising phase of a cardiac action potential, is accompanied by the influx of Ca\(^{2+}\) as well as Na\(^{+}\) (Nayler and Merrillees, 1971). Some of the Ca\(^{2+}\) which is involved in this influx is derived from the extracellular phase but some of it is probably displaced inwards from superficially located storage sites associated with the polysaccharides in the basement coat of the cell membrane (Langer, 1971; Nayler, 1973). When displaced inwards some of these Ca ions may activate contraction directly, but some of them probably function as a ‘transmitter-like’

substance, evoking the release of more Ca\(^{2+}\) from intracellular storage sites. These intracellular storage sites are almost certainly associated with the sarcoplasmic reticulum, that fine lace-like network of tubules seen in Fig. 1, and which envelopes the myofibrils, crossing from sarcomere to sarcomere and coming into close proximity to the cell membrane and its intracellular ramifications (Porter, 1961). This subcellular organelle can accumulate and store Ca\(^{2+}\) against a considerable concentration gradient (Schwartz, 1971). Presumably, therefore, it serves a dual function:

(a) to provide a source of Ca\(^{2+}\) which can be released into the vicinity of the myofibrils to facilitate contraction;

(b) to provide a mechanism for retrieving Ca\(^{2+}\) from the sarcoplasm, to facilitate relaxation.

That the catecholamines increase both the peak tension developed during contraction and the rate at which that tension develops is now firmly established. These catecholamine-induced changes in contractility almost certainly can be accounted for in terms of an increase in the amount of Ca\(^{2+}\) (Shigenbou and Sperelakis, 1972) which enters the cell during the rising and plateau stages of the action potential, shown schematically in Fig. 4. Whether this catecholamine-induced increase in the amount of Ca\(^{2+}\) which becomes available for interaction with the myofibrillar proteins results from the activation of a membrane-located adenyl cyclase enzyme is not yet firmly established, but it is known that cardiac cell membranes contain an active adenyl cyclase enzyme capable of converting ATP to 3'-5' AMP (Rubio, Berne and Dobson, 1973), and that under certain conditions 3'-5' AMP facilitates the transfer of Ca\(^{2+}\) across isolated membranes (Kirchberger et al., 1972).
As well as increasing the peak tension developed during contraction and the rate at which tension is developed the catecholamines accelerate the transition from systole to diastole. Recent studies (Katz and Repke, 1973) have shown that this catecholamine-induced increase in the rate at which cardiac muscle undergoes relaxation may be due to a 3' 5' AMP-dependent increase in the rate at which Ca2+ is accumulated by the sarcoplastic reticulum.

The scheme of events which may be involved in this process is shown schematically in Fig. 5. By activating the adenyl cyclase enzyme the catecholamines increase the intracellular availability of 3' 5' AMP and therefore, indirectly, increase the rate at which Ca2+ is accumulated by the sarcoplastic reticulum. This in turn should facilitate the transition from systole to diastole.

The presently available β-adrenoceptor antagonists block many of these catecholamine-induced changes and therefore can be used clinically to protect the myocardium against the effects of excessive sympathetic stimulation (Nayler and Carson, 1973). These effects of sympathetic stimulation include, in addition to the enhanced contractile force and rate of tension development, an increase in heart rate (Braunwald and Chidsey, 1965). When it is recalled that the main determinants of myocardial oxygen consumption (Sarnoff et al., 1958; Braunwald, 1971) include rate of tension development, the peak tension developed during systole and heart rate (Table 1) then it is not altogether surprising to find that β-adrenoceptor antagonists are useful in limiting the myocardial demand for oxygen (Hamer, 1968; Nayler and Carson, 1973) and therefore have proved useful for the treatment of angina pectoris. The presently available β-adrenoceptor antagonists generally increase the overall efficiency with which the heart performs useful mechanical work (Nayler et al., 1967, 1968b). Some of them (Nayler et al., 1967) increase coronary vascular resistance. Because of their β-adrenoceptor blocking activity, however, they deprive the heart of sympathetically-mediated support.

The use of β-adrenoceptor antagonists as antiarrhythmic compounds largely reflects their ability to protect the heart against the effects of excessive neurotransmitter release (Vaughan Williams, 1972). However, some of this antiarrhythmic activity, particularly when high dose levels are established, may involve the ability of these drugs to interact with the cell membrane in such a way as to render that membrane less permeable to various ions, including Na+ and Ca2+ (Nayler et al., 1969). Interaction with the cell membrane to limit its permeability to Ca2+ is not the prerogative of β-adrenoceptor blocking drugs; for example the drug verapamil, which although devoid of β-adrenoceptor blocking activity, is useful for the relief of angina pectoris and the relief of certain arrhythmias (Singh and Vaughan Williams, 1972; Kriker, 1974) and owes its activity to its ability to impede the entry of Ca2+ into the cardiac muscle cell (Fleckenstein, 1971; Nayler and Szeto, 1972).

Like propranolol (Table 2) verapamil decreases cardiac contractility and heart rate (Nayler et al., 1968a). Like propranolol, therefore, it decreases the myocardial demand for oxygen (Nayler and Szeto, 1972). However, in marked contrast to propranolol (Nayler et al., 1967) verapamil reduces coronary vascular resistance (Nayler et al., 1968a). Both drugs increase the efficiency with which the heart performs useful mechanical work (Nayler et al., 1968a and b; Nayler and Szeto, 1972). These effects of propranolol and verapamil are summarized in Tables 1 and 2. Despite the similarities which exist between these drugs verapamil differs from either propranolol,
oxprenolol, or pindolol in that it neither deprives the heart of sympathetic support nor does it interfere with the adenylyl cyclase enzyme. Probably verapamil represents the first of a new and exciting series of drugs which may be useful for relieving angina pectoris (Sandler, Clayton and Thornicroft, 1968; Nyberg, 1973) and arresting cardiac arrhythmias. The action of verapamil almost certainly can be accounted for in terms of its ability to react with superficially-located Ca²⁺ storage sites in heart muscle cells, so that when the cell membrane is depolarized fewer Ca ions will be displaced inwards into the vicinity of the myofilaments. Accordingly the myocardial demand for oxygen is reduced (Nayler and Szeto, 1972) and arrhythmias reversed (Schamroth, 1971; Schamroth et al., 1972).

References

Shigenobu, K. & Sporrelakis, N. (1972) Calcium current channels induced by catecholamines in chick embryonic
hearts whose fast sodium channels are blocked by tetrodotoxin or elevated potassium. Circulation Research, 31, 932.

Verapamil and the myocardium

Winifred G. Nayler and Dennis Krikler

Postgrad Med J 1974 50: 441-446
doi: 10.1136/pgmj.50.585.441

Updated information and services can be found at:
http://pmj.bmj.com/content/50/585/441

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/