Minimal dose of a stimulus for maximal pepsin secretion

H. G. Desai
M.D., Ph.D.

F. P. Antia
M.D., M.S., F.R.C.P.

Summary

Dose-response curves were obtained with subcutaneous histamine acid phosphate (HAP) in twenty-two subjects, intravenous HAP in fifteen subjects, subcutaneous pentagastrin in fourteen subjects and intravenous pentagastrin in twelve subjects in order to determine the minimal doses of these stimuli for maximal pepsin secretion.

The minimal doses for maximal pepsin secretion were 2-8 mg HAP on SHT, 1.2 mg/hr HAP on IHT, 300 μg pentagastrin on SPT and 100 μg/hr pentagastrin on IPT.

From dose-response curves, the minimal doses for maximal acid secretion were reported for subcutaneous (Kay, 1953) or intravenous (Lawrie, Smith & Forrest, 1964) histamine acid phosphate (HAP) and subcutaneous (Makhlouf, McManus & Card, 1966) or intravenous (Konturek & Lankosz, 1967) pentagastrin (ICI 50123). However, similar dose-response curves to determine the minimal dose of a stimulus for maximal pepsin secretion are not reported. In various studies, the doses of different stimuli which had caused a maximal acid secretion were administered to stimulate maximal pepsin secretion, on the assumption that parietal and chief cells have some definite relationship both in health and disease in all individuals.

The object of this study was to perform dose-response curves with different stimuli with a view to determine the minimal doses for maximal pepsin secretion.

Materials and methods

Dose response curves were performed with subcutaneous HAP in doses of 1.6, 2.0, 2.4, 2.8 and 3.2 mg in twenty-three male subjects (eleven control and twelve duodenal ulcer), with intravenous HAP in doses of 0.8, 1.2, 1.6, 2.0, 2.4 and 2.8 mg/hr in fifteen male subjects (nine control and six duodenal ulcer), with subcutaneous pentagastrin in doses of 250, 300, 350, 400 and 450 μg in fifteen male subjects (four control and eleven duodenal ulcer) and with intravenous pentagastrin in doses of 50, 100, 150 and 200 μg/hr in twelve male subjects (four control and eight duodenal ulcer).

Gastric aspirate was obtained through 14 or 16 Fr Levine tube by continuous hand suction for 1 hr during subcutaneous tests and for 2 hr during intravenous tests. Details of the procedure are given in a previous study (Desai, Zaveri & Antia, 1970a). Pepsin estimation was performed in each half-hour sample by the method of Hunt (Hunt, 1948) using plasma as substrate; the blue colour with Folin and Ciocalteau reagent was measured on a colorimeter. In our laboratory, 1 mg of crystalline pepsin (Worthington Biochemical, USA) showed 140 Hunt units of peptic activity.

Results

Subcutaneous histamine tests (SHT)

On increasing the doses of HAP from 1.6 to 2.0, 2.0 to 2.4 and 2.4 to 2.8 mg, the mean and standard deviation (SD) of differences of pepsin output on paired 't' testing showed an increase of 1.8 ± 1.8 (P < 0.01), 1.46 ± 1.6 (P < 0.01) and 1.46 ± 2.56 (P < 0.05) kilounits/hr respectively. Further increase in dosage of HAP from 2.8 to 3.2 mg showed a significant decrease of 1.38 ± 2.5 kilounits/hr of pepsin output (P < 0.05) (Table 1). The minimal dose of

<table>
<thead>
<tr>
<th>Dose of subcutaneous HAP (mg)</th>
<th>1-6</th>
<th>2-0</th>
<th>2-4</th>
<th>2-8</th>
<th>3-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean and SD of differences</td>
<td>1.8</td>
<td>1.46</td>
<td>1.46</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>of pepsin output (Kilounits/hr)</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>(18) *</td>
<td>(19)</td>
<td>(18)</td>
<td>(18)</td>
<td>(18)</td>
<td></td>
</tr>
</tbody>
</table>

* The figures in brackets refer to paired 't' test in each group (Tables 1–4).
subcutaneous HAP for maximal pepsin secretion was 2.8 mg. A supramaximal dose of 3.2 mg caused a significant reduction of pepsin output.

Intravenous histamine tests (IHT)

On increasing the doses of intravenous HAP from 0.8 to 1.2, 1.2 to 1.6 and 1.6 to 2.0 mg/hr, the mean and SD of differences of pepsin output on paired 't' testing showed an increase of 2.14 ± 2.76 (P=0.05), 0.22 ± 1.95 (P>0.05) and 0.24 ± 2.27 (P>0.05) kilounits/30 min respectively. Further increase in dosage of HAP from 2.0 to 2.4 and 2.4 to 2.8 mg/hr showed a reduction of 0.61 ± 1.93 (P>0.05) and 1.23 ± 1.17 (P<0.01) kilounits/30 min respectively (Table 2). The minimal dose of intravenous HAP for maximal pepsin secretion was 1.2 mg/hr while a supramaximal dose of 2.8 mg/hr caused a significant reduction of pepsin output.

Subcutaneous pentagastrin tests (SPT)

On increasing the doses of pentagastrin from 250 to 300 and 300 to 350 µg, the mean and SD of differences of pepsin output showed an increase of 2.11 ± 2.77 (P=0.05) and 0.11 ± 4.57 (P>0.05) kilounits/hr respectively. Further increase in dosage of HAP from 350 to 400 and 400 to 450 µg caused a reduction of pepsin output of 0.52 ± 4.28 (P>0.05) and 0.58 ± 2.73 (P>0.05) kilounits/hr respectively (Table 3). The reduction of pepsin output (1.94 ± 5.15 kilounits/hr) on increasing the dose from 350 to 450 µg was also not significant (P>0.05). The minimal dose of subcutaneous pentagastrin for maximal pepsin secretion was 300 µg.

Intravenous pentagastrin tests (IPT)

On increasing the doses of pentagastrin from 50 to 100 µg/hr and 100 to 150 µg/hr, the mean and SD of differences of pepsin output showed a rise of 0.93 ± 1.24 (P<0.05) and 0.63 ± 1.36 (P>0.05) kilounits/30 min respectively. Further increase of dosage from 150 to 200 µg/hr caused a reduction of 0.35 ± 1.86 (P>0.05) kilounits/30 min (Table 4). The minimal dose of intravenous pentagastrin for maximal pepsin secretion was 100 µg/hr.

Discussion

Dose-response curves for maximal pepsin secretion have been obtained with subcutaneous pentagastrin in two control subjects (Makhlof et al., 1966) and with intravenous pentagastrin and histamine in three control subjects (Berstad & Paterson, 1971) but the minimal doses for maximal pepsin secretion were not obvious as only a few subjects were studied. In the present study, the minimal doses for maximal pepsin secretion were 2.8 mg HAP on SHT, 1.2 mg/hr HAP on IHT, 300 µg pentagastrin on SPT and 100 µg/hr pentagastrin on IPT. The results showed that the minimal subcutaneous doses for maximal pepsin secretion were identical with these reported for maximal acid secretion (Desai et
TABLE 5. Comparison of values of maximal pepsin secretion with subcutaneous or intravenous histamine and pentagastrin in two subjects

<table>
<thead>
<tr>
<th>No.</th>
<th>Route</th>
<th>Histamine acid phosphate (mg)</th>
<th>Pentagastrin (µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-8</td>
<td>1.2 1.6 2.0 2.4 2.8 3.2</td>
<td>50 100 150 200 250 300 350 400 450</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Subcutaneous</td>
<td>88</td>
<td>5.0 6.8</td>
</tr>
<tr>
<td></td>
<td>Intravenous</td>
<td>8*5</td>
<td>5.8 6.2</td>
</tr>
<tr>
<td>2</td>
<td>Subcutaneous</td>
<td>7.5 7.2</td>
<td>78 87*</td>
</tr>
<tr>
<td></td>
<td>Intravenous</td>
<td>5.5 6.3</td>
<td>6.9 98</td>
</tr>
</tbody>
</table>

* Highest value, figures in kilounits/30 min.

al., 1969; Desai, Zaveri & Antia, 1972). However, the minimal intravenous doses for maximal pepsin secretion, 1-2 mg/hr HAP and 100 µg/hr pentagastrin, are smaller than those required for maximal acid secretion, 2-0 mg/hr HAP and 150 µg/hr pentagastrin (Desai, Zaveri & Antia, 1970b; Desai, Zaveri, Dalvi & Antia, 1972). That minimal doses of intravenous pentagastrin and HAP for maximal pepsin secretions are lower than those for maximal acid secretion was reported by Berstad & Patersen (1971).

Supramaximal doses of subcutaneous and intravenous HAP caused a significant partial inhibition of pepsin secretion (Tables 1 and 2). Higher doses of pentagastrin also caused reduction of pepsin secretion but the differences were not significant (Tables 3 and 4). Pepsin secretion was not reduced with intravenous pentagastrin up to 7 µg/kg/hr (Berstad & Patersen, 1971) but doses higher than 8 µg/kg/hr showed a tendency to fall (Makhlouf et al., 1966).

In humans, histamine (Hirschowitz, London & Pollard, 1957), histalog (Wormsley, Mahoney & Ng, 1966) and pentagastrin (Makhlouf et al., 1966) stimulate pepsin secretion and values with any stimulus are comparable. In contrast, maximal values of pepsin secretion were shown to be appreciably lower with pentagastrin than histamine (Berstad & Patersen, 1971). In the present study, the values of maximal pepsin secretion in two subjects with HAP or pentagastrin by either route were comparable (Table 5).

Acknowledgments

Part of the work was done with a grant from B. Y. L. Nair Charitable Hospital and TNMC Research Society.

References

Minimal dose of a stimulus for maximal pepsin secretion

H. G. Desai, M. P. Zaveri and F. P. Antia

doi: 10.1136/pgmj.49.570.258

Updated information and services can be found at:
http://pmj.bmj.com/content/49/570/258

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/