A 2-year study of the efficacy and tolerability of prenylamine in the treatment of angina pectoris

NEIL CARDOE
M.B., B.S., M.R.C.P.

Norfolk and Norwich and Cromer and District Hospitals

Summary

Twelve out-patients with established angina pectoris who had previously participated in a double-blind trial of prenylamine lactate continued to record their daily anginal attack rate and glyceryl trinitrite consumption and continued to take prenylamine lactate in the same dose. However, after a short time it was possible to reduce the dose by 60 mg/day in five cases, as the original dose proved unnecessary for satisfactory control. Thus, the dose range of prenylamine lactate was as follows: 120 mg/day in three cases, 180 mg/day in six cases and 240 mg/day in the remaining three cases. No other anti-anginal agent other than GTN 0·5 mg BP was given at any time. As in the previous study, to be recorded an anginal attack had to be severe enough to interfere with activity at the time of the attack.

Introduction

Prenylamine lactate (N-(3,3-diphenylpropyl) methyl phenethyamine) has been shown to reduce the catecholamine content of sympathetically innervated organs. This is due to inhibition of uptake of noradrenaline by the storage granules (Schöne & Lindner, 1960; Juorio & Vogt, 1963; Carlsson & Waldeck, 1968; Euler, Stjärne & Lashajko, 1964; Euler & Stjärne, 1968). No beta-blocking action has been demonstrated (Hodge, 1969; Fleckenstein, 1968; Lindner, 1964). Studies of the effects of prenylamine lactate in man have demonstrated a slowing of the resting heart rate and reduction in post-exercise tachycardia (Kirchhoff & Herter, 1968; Pippig, Schneider & Hochrein, 1962; Abrahamsen, 1963; Batson, 1970, personal communication). Double-blind studies have shown prenylamine lactate to be effective in reducing the incidence of anginal attacks (Donat & Schlosser, 1966; Kappert, 1965; Luisada & Neumann, 1963; Stoker, 1968; Cloarec, 1968). In a previous double-blind study (Cardoe, 1968) the efficacy of prenylamine lactate in reducing the anginal attack-rate was confirmed. This paper reports the long-term follow-up of patients taking part in that study and a further double-blind trial comparing prenylamine lactate with identical placebo in the same group of patients.

Material and methods

(a) 18 month treatment period

Twelve of the thirteen patients in the previous double-blind trial continued to record their daily anginal attack rate and glyceryl trinitrite (GTN) consumption and continued to take prenylamine lactate in the same dose. However, after a short time it was possible to reduce the dose by 60 mg/day in five cases, as the original dose proved unnecessary for satisfactory control. Thus, the dose range of prenylamine lactate was as follows: 120 mg/day in three cases, 180 mg/day in six cases and 240 mg/day in the remaining three cases. No other anti-anginal agent other than GTN 0·5 mg BP was given at any time. As in the previous study, to be recorded an anginal attack had to be severe enough to interfere with activity at the time of the attack.

(b) Double-blind trial

After treatment for approximately 18 months, a further double-blind study was instituted. The trial consisted of four treatment periods, each of 4 weeks duration, two periods of prenylamine lactate administration in the same dosage as before and two periods in which the patients received identical placebo. The order of administration was randomized in such a way that no two consecutive periods were similar. Neither the physician nor the patients knew the identity of the tablets given in any period and in order to avoid the possible effect of 'suggestion' the patients were unaware that a placebo was being introduced. The patients were asked to continue recording the anginal attack rate and GTN consumption and were reviewed at 4-weekly intervals. At each visit the anginal attack rate and GTN consumption was noted, the latter being checked by counting the number of tablets utilized since the previous visit. Resting pulse rate and blood pressure were also recorded and any side effects noted. In addition, at the last visit haemoglobin, total and differential white cell count, blood urea, SGOT and SGPT values were determined.

Of the patients in the study, all had typical anginal pain and all but one had electrocardiographic signs of myocardial ischaemia.

Results

(a) 18 month treatment period

The mean fortnightly anginal attack-rate over the
period April 1967 to October 1968 is shown in Fig. 1. The figures for GTN consumption were identical.

No side effects attributable to prenylamine occurred.

(b) Second double-blind study

In order to confirm that the sustained improvement in this group of patients was, in fact, due to the administration of prenylamine, a second double-blind study was instituted. The results of this study are shown in Table 1. This shows that more attacks of angina occurred when the patients were taking placebo tablets than when they were on the active preparation. The column headed ‘P-A’ gives the difference in attack rate. The results on active and placebo tablets for all patients were examined statistically by Student’s paired t-test. This gave a mean difference (placebo minus prenylamine) of 12·8 and \( t = 3·95 \) with eleven degrees of freedom. This value is significant at the 0·01 level of probability.

The consumption of GTN tablets closely parallels the anginal attack-rate and the difference between active and placebo periods is also significant at the 0·01 level of probability. The resting pulse rate and blood pressure readings shown are those taken at the end of the second period of administration of prenylamine and at the end of the second placebo period. No readings were available for patient No. 1 while on the active preparation and this case has, therefore, been omitted from the calculations. It can be seen that the pulse rate tends to be lower during treatment with prenylamine but the difference is not statistically significant. Similarly, there is no significant difference in blood pressure values between active and placebo periods.

All patients continued to tolerate the drug well and no side-effects occurred. On the occasion of their last visit to the clinic a blood sample was taken for haemoglobin, total and differential white cell count, blood urea, SGOT and SGPT. The results of these estimations were within normal limits in all cases and further, showed no significant difference from those obtained during the first double-blind study 2 years previously.

Discussion

A review of the literature reveals little evidence of the long-term efficacy of anti-anginal preparations. This study demonstrates that the improvement in anginal attack-rate produced by prenylamine during the first double-blind trial was maintained over a period of 18 months. The mean fortnightly anginal attack-rate of this group of patients over the full period of study is shown in Fig. 2. It can be seen that during the preliminary observation period before the first double-blind trial this value was 27·6. During the placebo periods of the study this fell to 17·3. With the administration of prenylamine a further fall to 8·8 occurred and was subsequently maintained at a mean level of 6·4 for the following 18 months. During the second double-blind trial a rise to 10·3 occurred when the patients received placebo tablets but this was reduced to 7·0 on the administration of prenylamine.

The differences in anginal attack rate between the placebo periods and active periods in both double-
Table 1.

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Age</th>
<th>Sex</th>
<th>Daily dose (mg)</th>
<th>Anginal attacks in 8 weeks</th>
<th>GTN consumed in 8 weeks</th>
<th>Pulse rate</th>
<th>Blood pressure (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Active</td>
<td>Placebo</td>
<td>P-A</td>
<td>Active</td>
</tr>
<tr>
<td>1</td>
<td>62</td>
<td>F</td>
<td>180</td>
<td>9</td>
<td>25</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>M</td>
<td>240</td>
<td>14</td>
<td>19</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>M</td>
<td>120</td>
<td>11</td>
<td>23</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>57</td>
<td>F</td>
<td>180</td>
<td>58</td>
<td>79</td>
<td>21</td>
<td>58</td>
</tr>
<tr>
<td>5</td>
<td>64</td>
<td>F</td>
<td>180</td>
<td>25</td>
<td>48</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>74</td>
<td>F</td>
<td>180</td>
<td>15</td>
<td>22</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>67</td>
<td>F</td>
<td>180</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>54</td>
<td>F</td>
<td>180</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>62</td>
<td>F</td>
<td>120</td>
<td>7</td>
<td>17</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>58</td>
<td>M</td>
<td>240</td>
<td>71</td>
<td>110</td>
<td>39</td>
<td>71</td>
</tr>
<tr>
<td>11</td>
<td>66</td>
<td>M</td>
<td>120</td>
<td>95</td>
<td>92</td>
<td>-3</td>
<td>95</td>
</tr>
<tr>
<td>12</td>
<td>66</td>
<td>M</td>
<td>240</td>
<td>32</td>
<td>48</td>
<td>16</td>
<td>32</td>
</tr>
</tbody>
</table>

Totals          338 492 154 338 491 153 816 892 

Mean           74 81 145/81 147/83
blind studies are, of course, statistically significant, as is the difference in mean fort nightly attack-rate between the 18-month treatment-period and the placebo periods of the second double-blind study. Therefore, it is clear that the improvement achieved with prenylamine in the first double-blind study and maintained over the following 18 months was, in fact, due to the administration of the drug.

It is of interest to note that in the 18-month treatment-period the variation in incidence of attacks is relatively small and is unrelated to seasonal variation in temperature (see Fig. 1). This is in contradistinction to the findings of Aubert et al. (1970), who found a close correlation between anginal attack rate and outdoor temperature, and may be due to the patients realising that exposure to cold could precipitate an attack and thus avoiding such exposure whenever possible.

Further, it may be seen that the passage of time had no significant effect on the attack-rate, the average fortnightly attack-rate in the first 9 months being 6.8 and in the second 9-month period 6.0.

As noted by Wilson et al. (1969), in their trial of oxprenolol, it became obvious during the course of this study that the customary quantitative results did not offer a true reflection of the efficacy of the active preparation. This was largely due to the fact that patients receiving the drug experienced improvement in effort tolerance and thus undertook a greater degree of exercise, frequently to the point of precipitating an anginal attack. Such an improvement is not apparent in the data, which only reflect quantitative results. This is exemplified by two patients in this study who, because of their improved effort tolerance on prenylamine, undertook relatively strenuous holidays. Their anginal attack-rate during this time differed little from before but obviously their capacity for exercise was greatly improved.

Finally, it is of interest to comment on the safety and tolerability of prenylamine. In this group of patients who received the drug over a total period of 2 years, no side-effects attributable to its administration occurred, nor was there any undesirable effect on haemoglobin, white cell count, blood urea, SGOT or SGPT. No serious complications, i.e. cardiac failure or bronchospasm, which have been reported in association with the use of adrenergic beta-blocking agents (Stephen, 1966; Besterman, 1966; Macdonald, Ingram & McNeil, 1967) were noted. This is probably due to the different mechanism whereby prenylamine achieves a reduction in sympathetic drive to the myocardium.

**Acknowledgments**

My thanks are due to Dr M. E. Kennedy, Medical Department, Hoechst Pharmaceuticals and his colleagues for supplies of prenylamine lactate (Synadrin 60) and to the nursing and secretarial staff of the Cromer and District Hospital.

**References**


A 2-year study of the efficacy and tolerability of prenylamine in the treatment of angina pectoris

Neil Cardoe

doi: 10.1136/pgmj.46.542.708

Updated information and services can be found at:
http://pmj.bmj.com/content/46/542/708

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/