Diseases of Jews

DENNIS M. KRIKLER
M.B. (Cape Town), F.R.C.P.E., M.R.C.P.

Consultant Physician, Prince of Wales's General Hospital, London N.15

Summary
The relative social and genetic isolation of Jews from other communities, which was much more marked in the past than now, has led to the belief that they are unusually prone to a variety of illnesses. Until the last few decades assessments of the incidence of various diseases among them were usually based on impressions rather than planned surveys or careful analyses, and many misconceptions still persist. It is proposed to consider the present state of knowledge as well as to indicate the historical and social basis for any tendencies for Jews to suffer from, or perhaps to resist, some diseases. No attempt has been made to analyse every single report in which Jewish pre-disposition to various diseases is mentioned; attention will be focused on those conditions that have received greater attention or from which it is possible to draw meaningful conclusions.

Historical
Until recent years, most reports on diseases in Jews emanated from Europe and America and dealt with what was found in Ashkenazi Jews. It is necessary therefore to define Jewish sub-groups and where possible to consider this classification in relation to more distant historical events (Groen, 1964; Sheba, 1968).

Ashkenazi Jews include those living in Central, West and East Europe and the descendants of those who have migrated from these areas to Israel, North and South America, South Africa and Australia. Just under half the Jewish population of Israel is Ashkenazi. Ashkenazi Jews are descended from those Jews who were deported from Israel to Rome in the first two centuries A.D. (Sheba, 1968). Subsequently, migration took place across the Alps into France, Germany, Poland, Russia and neighbouring countries. Their vernacular was Yiddish, a blend of Mittelhochdeutsch and Hebrew, flavoured by local influences.

Sephardi Jews may have left Israel somewhat later, when the Roman Empire broke up, joining pre-existing communities around the Mediterranean and Balkans, and extending into Spain and Portugal. Their vernacular was Ladino, based on Spanish. These were the Jews who were expelled from Iberia at the end of the fifteenth century; most settled in the Balkans and North Africa, but some went to Holland and subsequently Great Britain. Sepharad was the Hebrew name for Spain in the Middle Ages; Germany was similarly known as Ashkenaz (Fishberg, 1911).

Oriental Jews, living in the Middle East and even further afield, are probably the descendants of those deported to Babylonia in 586 B.C., who did not return to Judea when permitted to do so 54 years later, with periodic reinforcements during subsequent migrations (Ben-Zvi, 1957).

Whether or not the above historical differentiation, which is similar to that cited by others (Gordon, 1965) is correct, it provides a useful working basis for the purpose of this survey. With rare exceptions like the original Jews of Rome (Dunn & Dunn, 1957) and the Iraqi, Kurdish and Caucasian Jews (Sheba, 1968) these groups did not of course remain strictly isolated from the host population, and there were considerable admixtures, especially in Europe (Sheba et al., 1962), as well as loss by assimilation into the general population. Until the major resettlement of Jews in Israel during the present century, little was done to study population characteristics and sociological differences in these groups, but there have been many investigations recently (Goldschmidt, 1963). Although Jewish populations have tended to remain separate, they have nevertheless acquired many of the characteristics of the peoples among whom they live (Shapiro, 1960).

It is not proposed here to discuss anthropological features or to go into detail about the relative importance of genetic and environmental factors, but these must obviously be assessed in each case. In the past, crowded conditions in the ghettos may have been responsible for the spread of infections; correspondingly, this may have led to the emergence of genetic characteristics that enabled subsequent generations to resist such epidemics better. Consideration of some of the diseases said, believed, or known to predominate in Jews will enable possible aetiological factors to be explored.
Metabolic disorders

Diabetes mellitus is widely believed to be excessively frequent in Ashkenazi Jews (Rolleston, 1928; Sorsby & Sorsby, 1932; Brinn, 1962) but these impressions have not been borne out by careful studies in Israel (Cohen, 1961) and Sweden (Dahlberg, 1952). With continued residence in more prosperous surroundings the previously low incidence in Yemenite Jews rises to approximate that in Ashkenazis (Cohen, 1961). Exceptionally, relative isolates in whom consanguineous marriages are very frequent may manifest an excess of diabetes on this account, e.g. the Sephardic Jews of Rhodesia (Krikler, 1969).

Pentosuria is a benign, recessively-transmitted defect, one of the original inborn errors of metabolism described by Garrod (1908). It occurs almost exclusively in Ashkenazi Jews of Russo-Polish origin, although rare cases have been discovered in non-Ashkenazi Jews (Sheba et al., 1962) and Lebanese non-Jews (Barnes & Bloomberg, 1953); and recently an isolated case has been encountered in Canada in an Athabaskan Indian (Perry & Finch, 1967). The affected Lebanese families tend to be highly inbred (Khachadurian, 1962; Politzer & Fleischmann, 1962).

Glycogen storage diseases have been reported from many parts of the world, but in Israel it has been found that the type III disease (amylo-1, 6-glucosidase deficiency; limit dextrinosis) was not found in Ashkenazi Jews but that there was an extraordinarily high gene frequency in Jewish immigrants from North Africa (Levin et al., 1967), with autosomal recessive transmission.

Obesity is frequently held to affect Jews more than others (Rolleston, 1928), but whether this is correct has not been proved; if so, environmental factors are probably important.

A number of writers have stated that idiopathic hypercholesterolaemia tends to occur more frequently in Jews (Schaefer et al., 1953) and that this may produce an excess incidence of coronary artery disease (Epstein, Boas & Simpson, 1957; Epstein, Simpson & Boas, 1957) but Fredrickson & Lees (1966) point out that type II hyperlipoproteinaemia is common in many population groups and not especially so in the (Ashkenazi) Jews mentioned in the other studies. Likewise, Brunner & Manelis (1960) in a study of members of communal settlements in Israel were unable to show there to be any excess of cardiac infarction over that found in English workers. Dreyfus (1953) noted much more coronary artery disease among Ashkenazi than Oriental Jews. It seems likely that the differing results of these studies reflect socio-economic rather than genetic conditions (Epstein, 1967), but the recent work of Vlodaver, Kahn & Neufeld (1969) poses some questions. They studied the coronary arteries in full-term foetuses, infants and children (who did not die from cardiac disease) and found intimal and musculo-elastic changes in the Ashkenazi, but not in the Yemenite-Jewish or Bedouin subjects. They point out the apparent correlation between these findings and the incidence of ischaemic heart disease in these population groups; the relevance of these changes to the onset of the disease in adult life remains to be shown.

The cerebral sphingolipidoses are not, as sometimes said, confined to Jews, but in the case of Tay-Sachs disease, infantile Niemann-Pick disease and chronic adult Gaucher's disease, there is an overwhelming preponderance of Ashkenazi Jews (Knudson & Kaplan, 1962). Inheritance is generally recessive. There is some evidence that heterozygote carriers of Tay-Sachs disease have advantages in reproductive performance and survival when compared with normal individuals, and the same may also apply to Gaucher’s and Niemann-Pick diseases (Myrianthopoulos & Aronson, 1966). The relatively high incidence of Tay-Sachs disease may have initially been determined by the ‘founder effect’ due to the fortuitous presence of a heterozygote carrier for this disease among the original Jewish migrants who settled in Lithuania many generations ago (Livingstone, 1969)—doubtless this could apply to other conditions. The historical perspective of Gaucher’s disease in Jews is entertainingly discussed by Groen (1964).

Abetalipoproteinaemia, a recessively transmitted disorder in which there is malabsorption, neuropathy, retinitis pigmentosa, acanthocytosis (a 'burr cell' malformation of the red cells) and absence of betalipoprotein from the serum, was first recognized in an American Jewish (and thus very likely Ashkenazi) family (Bassen & Kornzweig, 1950; Kornzweig & Bassen, 1957), but the two affected siblings were the offspring of parents who were first cousins, and subsequent reports also favour recessive inheritance (Salt et al., 1960) Although McKusick (1966) considers this to be almost exclusively a disorder of Jews, his impression is not shared by Wolff (personal communication) who has seen four cases, none of them in Jews.

When another rare lipidosis (Wolman's disease) was described in three children of Persian Jewish parents who were first cousins (Wolman et al., 1961) it was thought that this might be a recessive disorder exclusive to Jews, but the disease has been reported in three unrelated white American gentiles of diverse origins (Crocker et al., 1965) and in Israeli Arabs (Wolman, 1968). Clinically, the disease resembles Hand-Schlüller-Christian disease or eosinophilic granuloma; histologically the foamy histiocytes appear identical with those found in Niemann-Pick disease, but they contain triglycerides and cholesterol (Wolman, 1968).
Phenylketonuria (PKU) is generally thought to be most characteristic of Northern European ethnic groups; thus if it were to occur in Jews one would suppose that the gene would most often be found in Ashkenazis. However, only one case has been reported in an Ashkenazi, a child born in America of non-consanguineous Russian immigrant parents (Cohen & Kozinn, 1949). Paradoxically, the frequency of PKU in mentally retarded non-Ashkenazis in Israel (1%) (Cohen et al., 1966) is of the same order as that found in the United Kingdom and America among non-Jewish patients (Cohen, Bodonyi & Szeinberg, 1961); but there was not a single Ashkenazi case among the fifty-seven found in an extensive screening programme in Israel (Cohen & Szeinberg, 1967); two Arab families were affected, the rest being Oriental or Sephardi Jews. Arabs are affected in the same frequency as Europeans (Salam, 1963). As with other cases of PKU, some affected Israelis are lighter in colour than their relatives (Laron, Yonis & Bornstein, 1960), though many do have dark complexions and hair and brown eyes (Cohen et al., 1961). The metabolic block in non-Ashkenazi Jews is identical to that found in Caucasians (Cohen & Szeinberg, 1967). The apparent freedom of Ashkenazis is puzzling.

Glycinuria is increasingly recognized as a disorder of renal tubular transport occurring in both Orientals and Caucasians (Rosenberg, Durant & Elsas, 1968) that may be quite benign. Among the Caucasians there has been a preponderance of Ashkenazis (Rosenberg et al., 1968; Whelan & Scriver, 1968) though the Bulgarian family reported by De Vries et al. (1957) is Sephardic (De Vries, personal communication.).

The first case of tyrosinosis was reported in a Russian-born Jew found to have a reducing substance in the urine, the \(\alpha \)-ketoacid, \(\rho \)-hydroxyphenylpyruvic acid (Medes, 1932). This patient was often reported as being the only case described (McKusick, 1966) and the condition appeared quite benign. However, there are several other reports in which it appears that a more severe degree of tyrosinosis may be associated with hepatic and renal damage and hypophosphataemic rickets; it is found in non-Jews (Halvorsen & Gjessing, 1964).

Wilson's disease (hepatolenticular degeneration) is a recessively transmitted disorder, of widespread occurrence that is rather more frequent in relatively isolated population groups. Thus it is not surprising that Bearn (1960) in New York found more cases of this disorder among Sicilians and Southern Italians, and Ashkenazi Jews from the Russo-Polish border area, than in other groups. The Jewish cases showed more evidence of consanguinity, a later onset (and thus greater fertility) and often had normal serum levels of copper and caeruloplasmin. While Wilson's disease is not a disorder predominantly affecting Jews, there are reasons for expecting that it may occur more often in Jews whose ancestors lived in the Russian Pale of Settlement.

The Dubin-Johnson syndrome is a benign cause of jaundice in which there is an excess of conjugated bilirubin in the plasma, and dark pigment in the liver cells. Recognized throughout the world, and thought to be inherited as a dominant trait with incomplete penetrance, it has been found to be especially common in Iranian Jews now living in Israel (Shani et al., 1967). The frequency of the disorder is 1:2000 in Iranian Jews, as compared with 1:250,000 in other peoples; the incidence in the non-Jewish population of Iran has not been reported.

An endocrine disease once thought, on slender grounds, to occur more often in Jews is acromegaly (Rolleston, 1928) but further evidence for this belief has not been forthcoming.

Blood

When the first reports on polycythaemia appeared from America, a high incidence was noted in Jewish immigrants from Eastern Europe (Lucas, 1912) and this appeared to be corroborated by a study of polycythaemia vera in which an attempt was made to eliminate the ethnic bias inherent in the population structure of New York (Reznikoff, Foot & Betha, 1935). Subsequent studies have not substantiated these claims and polycythaemia vera does not appear to be especially common in Ashkenazis in Israel.

Haemophilia has often been considered to be unduly frequent in Jews (Rolleston, 1928), but this has not been borne out; it is of interest that it was recognized by Talmudical writers (Rosner, 1969). A bleeding disorder that does affect Jews more than others is factor XI (contact factor) deficiency (Nossel, 1964; Leiba, Ramot & Many, 1965); a recent report of its probable occurrence in Africans does not appear fully substantiated (Forrest & Wicks, 1968).

Familial neutropaenia is a benign disorder that tends to afflict Yemenite Jews (Alkan & Feinaro, 1967) and that has been recognized in several patients of Adeni Jewish origin at the Prince of Wales's Hospital. It does not appear to be associated with disease or to have an adverse prognostic importance; it seems similar to the neutropaenia found in West Indians and Africans (Rippey, 1967; Shaper, Kyobe & Stansfield, 1962).

Among Jews of Tunisian and Libyan origin, a recessively transmitted syndrome of selective vitamin \(B_{12} \) malabsorption, apparently due to lack of receptors to bind the \(B_{12} \)-intrinsic factor complex prior to absorption, has been recognized by Ben-Bassat, Feinstein & Ramot (1969): the associated, unexplained, proteinuria appears to be benign.

Various haemoglobinopathies are recognized in Oriental Jews, especially those from Bokhara.
(Schieber, 1945) and Kurdistan (the Biblical Assyria, where the first Jews were exiled from Israel in 722 B.C.) (Matoh, Shamir & Freundlich, 1955) and \(\beta\)- and \(\gamma\)-thalassaemias have been identified, including Haemoglobin-H and Haemoglobin-Barts (Klibansky et al., 1960; Ramot et al., 1959). In addition, two unique \(x\)-variants have been recognized in Ashkenazi and Oriental Jews—Haemoglobin–Beilinson (De Vries et al., 1963) and the rather similar Haemoglobin–Hasharon (Halbrecht et al., 1967)—and another unique \(x\)-variant in Ashkenazis originating from the Polish–Lithuanian borders (Clejan et al., 1969).

The recognition of glucose-6-phosphate dehydrogenase deficiency (G-6-PDD) in Oriental Jews has been of great importance. Among Ashkenazi Jews the incidence of G-6-PDD is extremely low (0-4%) and probably no higher than among Northern European populations generally, but in non-Ashkenazi Jews it varies from 1 to 2\% among European Sephardis to 25\% in Iraqi Jews, 28\% in Caucasian Jews and 58\% among Kurdish Jews (Sheba et al., 1962). It therefore seems likely that a mutation took place among the Judeans and Phoenicians living in the eastern Mediterranean area, and that it spread from them to other parts of the Mediterranean and Middle East and into the Moslems among whom they lived (Bowman & Walker, 1961). Allison & Clyde (1961) have suggested that G-6-PDD has persisted because it provides protection against \(P. falciparum\) malaria, but Sheba et al. (1962) and Bowman (1967) contest this. Sheba has advanced an intriguing theory for the prevalence of G-6-PDD in non-Ashkenazi Jews and its virtual absence from Ashkenazis: the former migrated from Israel with their families, whereas the latter are the descendants, he believes, of male captives taken to Rome after the destruction of the Second Temple. They were not accompanied by Jewesses and would have had to take wives from among non-Jewish slaves, from Illyria or across the Alps. As G-6-PDD is transmitted on the X-chromosome, the trait would thus have been lost to the following generations.

G-6-PDD among Jews is similar to that occurring in other Mediterranean populations, and differs from the Negro variety found in Africa and America (Carson & Frischer, 1966). Enzyme activity is 0–8% of normal and there is increased susceptibility to haemolysis upon exposure to a wide variety of drugs and agents that stress the oxidative reactions of the phosphate-pentose pathway, including antimalarials of the 8-aminoquinoline series (e.g. primaquine), sulphonamides, phenacetin, and exposure to the fava bean, \(Vicia fava\) (favism). However, haemolytic disease of the newborn does not appear to occur in Jews as it does in other Mediterranean peoples with G-6-PDD.

The importance of this disorder has been brought home to us at the Prince of Wales’s Hospital because the population served by the hospital includes Oriental Jewish immigrants from Aden, Iraq and India, and a number of cases of G-6-PDD have been recognized among them; at least one has suffered from a drug-induced haemolytic anaemia.

Nervous system

The cerebral sphingolipidoses have already been discussed above. On the basis of personal impression and statements in textbooks, Jews are said to suffer unduly often from depression (Miller, 1967 and personal communication) and perseveration (Cattell, 1932). Social, as opposed to genetic, factors may possibly lead to the more overt expression of psychological symptoms by Ashkenazi Jews than by other Europeans. Multiple sclerosis in Jews appears to correlate with the latitude of origin (Alter et al., 1962) and socio-economic status (Antonovsky et al., 1967) rather than with genetic factors. In Israel the disease is more common among immigrants from Europe than from Africa or Asia; among native-born Israelis the prevalence is the same irrespective of the origin of their forebears (Leibowitz, Kahana & Alter, 1969).

Anosmia has been described in Russian-Jewish families in association with hypogonadism (Kallman, Schoenfeld & Barrera, 1944) or by itself (Glaser, 1918) due to agenesis of the olfactory lobes of the brain. These disorders may be X-linked, but the analysis of new causes that may be recognized and chromosome studies are obviously desirable. In familial dysautonomia, anosmia may be an associated symptom (Schneider, 1967). First reported by Riley et al. (1949), this recessively transmitted disorder typically affects a Jewish child who presents with dysphagia, recurrent pneumonia, poor motor co-ordination, absence of tears, hypotension and a number of other autonomic disturbances (Dancis & Smith, 1966). All the Israeli cases are of Ashkenazi origin (Moses et al., 1967) and an overwhelming preponderance among Ashkenazis (as opposed to Gentiles) has likewise been noted in America by McKusick et al. (1967) who speculate that, as in Tay-Sachs disease, the heterozygote may confer a selective advantage. They estimate the frequency of dysautonomia in American Jews at between 1 in 10,000 and 1 in 20,000 births: one in fifty may carry the gene. Patients show an abnormal response to histamine and have abnormal taste buds; the fundamental defect remains unknown (Dancis & Smith, 1966).

Dystonia musculorum deformans (primary torsion dystonia) is a rare disorder at first thought to be particularly common in Russian and Polish Jews (Zeman, Kaelbling & Pasamanick, 1959) but now recognized in other groups, including French
Peripheral disease

Peripheral disease (McKusick, 1966). Of great interest is the demonstration of superior intelligence in the recessively inherited form of this condition (Eldridge et al., 1970) and the possibility that effects like this may explain the intellectual and cultural achievements attributed to Ashkenazis (Snow, 1969).

Spongy degeneration of the nervous system is a rare disorder that affects the white matter, and causes atonia, blindness and mental defect, with death at an average age of 18 months; it appears to be recessively transmitted and to affect Eastern European Jews (Van Bogaert, 1963; Zu Rhein, Eichmann & Puletti, 1960).

In a survey of deafness among children in Northern Israel, Winter & Dar (1967) found a high incidence among North African Jews which they thought was largely genetic in origin, and often noted in the offspring of consanguineous marriages. In about 70% of cases, the deafness was recessively transmitted (Dar & Winter, 1969). Deafness in association with albinism has been found in Moroccan Jews: X-linked, with partial albinism (Ziprkowski et al., 1962), and recessive with total albinism (Ziprkowski & Adam, 1964). Some of the latter families showed forms frustes with deafness alone. The conditions described by Ziprkowski do not appear closely to resemble the syndrome of deafness, partially expressed albinism and facial anomalies, described by Waardenburg (1951), which is found in many races.

While myopia was mentioned by Sorsby & Sorsby (1932) as being more common among Jews than others, this impression could not be sustained and is not repeated in a later review by one of these authors (Sorsby, 1953).

Anencephaly and spina bifida appear to occur infrequently in American and Israeli Ashkenazis, especially when compared with an Irish group; this may partly be due to socio-economic status, but ethnic factors seem independently important (Naggan & MacMahon, 1967).

Peripheral vascular system

In many ways thromboangiitis obliterans (Buerger's disease) is the 'classical' disease attributed to Jews; but it occurs in all sections of the population, among Whites and also Negroes and Asians (Allen, Barker & Hines, 1962). Familial cases are extremely rare. The first large series was reported from New York, with its high population of Jewish immigrants from Eastern Europe, and the disease was thought to occur frequently, though not exclusively, in Russian and Polish Jews (Buerger, 1908). Now doubt has been cast on its existence as a specific entity (Wessler et al., 1960) and uncontrolled observations made in the past are not easily substantiated, nor can genetic or specific environmental mechanisms be invoked.

Alimentary tract

Ulcerative colitis appears to be more common in Jews than in Gentiles (Mendeloff et al., 1966; Weiner & Lewis, 1960). Acheson & Neffger (1963) found the condition to be twice as frequent in Jewish soldiers in the American Army as in non-Jewish servicemen and that this was not related to their place of birth or residence; they felt that their results were consistent with a genetic susceptibility in Jews. In Israel, ulcerative colitis appears to occur or to be recognized less often than in England and Wales, and also to affect Ashkenazis more often than non-Ashkenazis (Birnbaum, Groen & Kallner, 1960).

According to Monk et al. (1967) the excessive incidence of ulcerative colitis in Jews cannot be attributed—certainly as far as their community study in Baltimore is concerned—to diagnostic bias or to a greater likelihood that Jews would be admitted to hospital or undergo more intensive study, although these aspects may play some role. In their study, Jews had an incidence two to four times higher than white Gentiles.

A similar Jewish preponderance appears to apply to Crohn's disease in America. At the Mayo Clinic, 163 out of 600 cases (25.5%) were Jewish—apparently a disproportionate number according to patient attendance (Van Patter et al., 1954), and an even greater excess was noted in Detroit—forty-three of 100 cases (Ruble, Meyers & Ashley, 1957). An excess of Jewish patients has also been reported by others (Acheson, 1960; Mendeloff et al., 1966; Monk et al., 1967) and a similar feature was found in children attending the Mayo Clinic (Van Heerden, Sigler & Lynn, 1967). Again, diagnostic bias does not seem to be responsible for the excess. There do not appear to be published reports on this condition from Israel, with comparisons between Ashkenazi and Sephardi or Oriental Jewish groups. In both diseases, there appears to be an excess of Jewish patients, but they are by no means confined to Jews, although apparently several times more common in Jews than in non-Jews; the respective influence of genetic and environmental (e.g. psychosomatic) factors remains to be assessed.

Fibrocytic disease of the pancreas is more common in Ashkenazis than other Jews in Israel (Levin, 1963). The incidence of gluten sensitivity in Jews is not known, but the disorder is well recognized.

It was for many years believed that haemorrhoids were more prevalent among Jews: Friedenwald (1944) quoted a number of historical sources for this belief, with reasons given including cramped conditions, enforced sedentary life in the ghetto and, going back to 1305, the theological basis propounded by Bernard de Gordon that this was due to 'divine vengeance' on the basis of Psalm 78, v.66—'... he smote his enemies in the hinder parts, he put them to a perpetual...'
reproach.' It seems unlikely that so widespread a disorder of the Western world troubles Ashkenazi Jews more than other people from Europe.

Skin
Reference has already been made to cases of albinism, usually associated with deafness (Zipkowski et al., 1962; Zipkowski & Adam, 1964). Numerous original and textbook reports suggesting an unduly high incidence of pemphigus vulgaris in Jews of Russian and Central European origin in New York are cited in a review by Brinn (1962) but this predilection has not been confirmed in Israel, and indeed one-third of the cases reported by Zipkowski & Schewach-Millet (1964) were non-Ashkenazi Jews.

Multiple systems
Precise classification of some diseases is difficult, and under this heading it is proposed to consider two disorders, both fairly recently recognized, with widespread effects, in which there is an increased tendency to affect different groups of Jews.

Familial Mediterranean fever (FMF) is the name given by Heller, Sohar & Sherf (1958) to a syndrome first clearly recognized as an entity by Siegal (1945), and considered by Reiman (1948) as a form of 'Periodic Disease'. The syndrome has recently been extensively reviewed (Sohar et al., 1967) and consists of recurrent, self-limited, febrile episodes lasting perhaps a few days, and accompanied by pleurisy, peritonitis, arthralgia and skin eruptions, alone or in varying combinations. Despite the rapid and complete recovery from attacks, the condition is not benign; amyloidosis, of the peri-recticular variety (i.e. resembling secondary amyloidosis) is a frequent and sinister complication, causing progressive fatal nephropathy (Sohar et al., 1963); sometimes preceding the typical clinical expression of FMF and, albeit rarely, sometimes the sole manifestation. Neither the attacks of FMF nor the onset or progression of amyloidosis can be halted by any form of treatment. However, Eliakim (1970) considers that amyloidosis is a less frequent and less severe complication than reported, and has also found it to occur much less often among Ashkenazi cases; in FMF proteinuria does not necessarily indicate the onset of amyloidosis (Eliakim et al., 1970).

Careful studies by the Israeli workers have demonstrated an autosomal recessive pattern of inheritance (Sohar et al., 1967), with overwhelming predominance in certain population groups, viz. Sephardic and Oriental Jews, Armenians and Arabs. Most of their Jewish cases were of North African, Iraqi or Turkish origin. However, occasional cases were recognized among Ashkenazi Jews and this has been reported in other series (Siegal, 1964) and indeed in non-Jews of Western European origin (Dormer & Hale, 1962).

There is still uncertainty about the existence as an entity of primary etiocholanolone fever, resembling FMF in several respects, yet not causing amyloidosis, but responding to corticosteroid therapy, and said to predominate in Ashkenazi Jews (Bondy, Cohn & Gregory, 1965). The great frequency of FMF in non-Ashkenazi Jews and Armenians provokes speculation about possible historical connections in the distant past. The pathogenesis and aetiology of the disease are completely unknown.

Also recently recognized, affecting many parts of the body, and predominantly affecting Ashkenazi Jews, is Bloom's syndrome, which comprises congenital telangiectatic erythema (especially of the face), solar hypersensitivity, and stunted growth (Bloom, 1954). This very rare disorder has been shown sometimes to be accompanied by a wide range of congenital abnormalities (Bloom, 1966); and it is now becoming appreciated that the disease can be lethal. Of the twenty-three cases recognized, three have died, all from acute leukaemia, and in one of these chromosomal breakage was recognized before the onset of leukaemia (Sawatsky, Bloom & German, 1966).

Neoplastic disease
It has for long been accepted that carcinoma of the penis is rare in Jews and this has been attributed to the religious custom of circumcision during infancy. It has also long been believed that this confers upon their marriage partners relative freedom from carcinoma of the cervix, but it is now known that the frequency of this neoplasm varies sharply among the different immigrant groups in Israel (Modan, Modan & Sheba, 1967), being high in North African Jewesses (Steinitz, 1967). It seems likely that the low incidence of carcinoma of the cervix in Ashkenazi Jewesses can in part be explained by sociological factors, including later age of marriage, and fewer children (Coppelson, 1969; Stewart et al., 1966); on the other hand, in New York carcinoma of the body of the uterus is unduly frequent in Jewish women. Obviously more study of environmental and genetic factors is needed before the situation can be clarified.

Carcinoma of the colon seems more common among Jews in New York than among Gentiles; yet in Israel the incidence is much lower (Wynder & Shigematsu, 1967). The frequency of carcinoma of the stomach and oesophagus varies among different groups of non-Ashkenazi Jews in Israel (Modan et al., 1967) and it seems likely that environmental factors are important. Carcinoma (and syphilis) of the tongue was thought to be rare in Jews (Sorsby & Sorsby, 1932).

Studies in Israel have revealed a curious disorder affecting young Arabs and non-Ashkenazi Jews—a
malabsorption syndrome associated with intestinal lymphoma (Ramot, Shahin & Bubis, 1965; Eidelman, Parkins & Rubin, 1966). Away from the lymphomatous areas, the bowel mucosa was abnormal, but these changes did not appear to be related to gluten sensitivity. Alimentary tract neoplasms are known to complicate idiopathic steatorrhoea (Gough, Read & Naish, 1962; Harris et al., 1967), but the relationship to this 'Mediterranean' lymphoma syndrome is not established. A geographical factor, such as postulated in Burkitt's lymphoma, is possible. A possible clue may be in the discovery of an IgA abnormality, in which the protein is devoid of alpha-chains, in Arab and Eurasian patients with a lymphoma syndrome resembling that described from Israel, as well as in the only Israeli patient whose blood has been examined for this abnormality (Seligmann & Rambaud, 1969). The results of family studies are now awaited; at present the aetiological factors remain undiscovered.

Unlike non-Ashkenazi Jews and Arabs, in whom lymphoma often affects young individuals and involves the alimentary tract, Ashkenazi Jews in Israel tend, like other Western populations, to be affected at an older age and to have peripheral lymphadenopathy (Ramot et al., 1964); childhood abdominal lymphoma is sometimes histologically similar to Burkitt's tumour (Hulu, Ramot & Sheehan, 1970).

Kaposis's sarcoma used to be thought to be especially common in Jews from Central and Eastern Europe, and also Italians; but this impression may partly have been related to the proportions of these people among immigrants to America; a much wider range of peoples are affected (Bluefarb, 1957), and the disorder is now known to occur fairly frequently in Africans and not to be particularly common among Jews in Israel (Gordon, 1967). The only familial report of its occurrence is in the father and son of a Rumanian-Jewish family (Zeligman, 1960); the role of genetic factors in this disease is not established.

The recent claim that cancers in general are relatively infrequent in American (and therefore Ashkenazi) and Israeli Jewish men, in inverse proportion to diabetes, and that this is linked with G-6-PD deficiency (which is rare in American Jews) (Kessler, 1970) seems somewhat questionable.

Miscellaneous

More than 40 years ago Rolleston (1928) discussed apparent resistance of Jews to tuberculosis: but now one cannot assess how accurate were the data on which this impression is based. He likewise referred to alcoholism as a disease from which Jews rarely suffer; social factors are presumably responsible, and may still apply.

Of pharmacogenetic importance are several observations made in Jews. Pseudocholinesterase abnormality leading to sensitivity to suxamethonium, and rapid inactivation of isoniazid appear to occur in Israeli Jews, whether Ashkenazi or not, in the same proportion as in European populations (Szeinberg, 1963). According to Sheba, Israeli Jews do not appear prone to the haematological toxicity of chloramphenicol, but this view is not universally accepted (Crosby, 1969). Recently, several Israeli Jews of Afro-Asian origin have been shown not to be able to bind the antituberculosis drug ethambutol onto a blood component, and thus achieve therapeutic levels; this may be genetically determined (Lewit, Teracina & Lewit, 1970). The most important of the pharmacogenetic associations is of course G-6-PD deficiency, already discussed; haemolysis due to acatalasia (deficiency of the enzyme catalase) may possibly occur, albeit rarely (Szeinberg, 1963).

There are numerous reports of the occasional occurrence of various physical quirks or rare disorders in Jews: obviously these cannot all be listed, but they include ovoid pupils in a Russian-Jewish mother and her identical twin daughters (White & Fulton, 1937); persistence of deciduous (and absence of permanent) canines transmitted by autosomal dominant inheritance in a German-Jewish family (Gruneberg, 1936); dominant hereditary Legg-Calve-Perthe's disease (Wamoscher & Farhi, 1963) in an Ashkenazi (Russian-Rumanian) family (Wamoscher, personal communication); and a recessive disorder of the red-cell membrane in a Polish-borne Jewish family (Danon et al., 1962). These are interesting reports but too rare to enable any deductions about their significance to be made.

Conclusions

Many conditions thought to be common among Jews have turned out, on closer analysis, not to be so, and this includes disorders like diabetes mellitus, acromegaly, polycythaemia rubra vera and Kaposis's sarcoma. On the other hand, different Jewish populations appear to be predisposed to suffer from a variety of less well known disorders. In the case of the Ashkenazi Jews, certain cerebral sphingolipidoses, Bloom's syndrome, familial dysautonomia, and Wilson's disease, appear to be unduly common. The Ashkenazi Jews mainly affected have been derived from the Russian Pale of Settlement, largely along the Polish-Lithuanian borders, and in at least some cases there appears to be heterozygote advantage conferred upon the carriers which has perhaps favoured the survival and dissemination of the gene. On the other hand, among the Sephardic and Oriental Jewish population, there appears to be a greater incidence of genetic disorders related to inbreeding, in keeping with the social customs of the Middle
East. Some disorders that appear to be unduly common among Ashkenazi Jews, e.g. ulcerative colitis and regional enteritis, have no demonstrable genetic background on the basis of present evidence; the intestinal lymphoma of Mediterranean type has been recognized too recently for it to be known whether it has an environmental or genetic aetiology. In Israel the social situation favours the mingling of the sub-sections of the Jewish population and this may well lead to the dilution of the effect of recessive genes. Those Jews who continue to live outside Israel, and who are predominantly Ashkenazi, will doubtless continue to remain exposed to these disorders. There is much scope for speculation as to how much the historical backgrounds of the various Jewish communities are responsible for these patterns of disease.

References
BIRNBAUM, D., GROEN, J.J. & KALLNER, G. (1960) Ulcerative colitis among the ethnic groups in Israel. Archives of Internal Medicine, 105, 843.
CATTELL, R.B. (1935) Perseveration and personality. Some experiments and a hypothesis. Journal of Mental Sciences, 81, 151.

LUCAS, W.S. (1912) Erythremia, or polycythemia with chronic cyanosis and splenomegaly. Archives of Internal Medicine, 10, 597.

Diseases of Jews

697

Wolman, M. (1968) Primary familial xanthomatosis with involvement and calcification of the adrenals (Wolman's disease). *Proceedings of the Tel-Hashomer Hospital*, 7, 1.

Diseases of Jews

Dennis M. Krikler

doi: 10.1136/pgmj.46.542.687

Updated information and services can be found at:
http://pmj.bmj.com/content/46/542/687

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/