Case reports

Hypervitaminosis D, anaemia and renal failure

ROGER GABRIEL
M.B., M.R.C.P., D.C.H.
Medical Registrar

A. M. JOEKES
M.A., B.M., F.R.C.P.
Physician and Senior Lecturer

Institute of Urology, St Philip’s Hospital, St Peter’s Hospital Group, London, W.C.2

E. ORTON
M.A., B.M., B.Ch.
General Practitioner, 98 Harley Street, London, W.1

A 53-year-old English lady was referred in January 1967 because of reduction in renal function. The only symptom disclosed was an invariable nocturia and daytime frequency of micturition every 2 to 3 hr during the previous year. The past history included an 18 month history of variable anaemia of 7–10 g/100 ml (Table 1), unexplained by barium meals, gastroscopy and laparotomy. Study of the bone marrow in June 1966 showed normal cellularity, erythropoiesis was normoblastic with normal haemoglobinization; 10% of the white cell precursors were developing eosinophils. There had been no sustained response to iron, vitamin B12 or folic acid.

On examination: no abnormality; BP 130/80; height 5 ft 4 in (160 cm); weight 47 kg.

Random and early morning urines were normal save for a specific gravity not exceeding 1010. Haemoglobin 8.8 g/100 ml; red blood count 3.1 m/m³; MCHC 30%; MCH 28.7 γ3; MCV 96.7 cu μ; reticulocytes 3.5%; serum iron 105 μg/100 ml; total iron binding capacity 270 μg/100 ml; white...
blood count 8000/mm³ with an eosinophilia of 850/mm³. Plasma creatinine 1·1 mg/100 ml and 24-hr creatinine clearance was 61 ml/min. Two weeks after the initial haematological measurements the eosinophilia was absent and the haemoglobin had risen to 9·4 g/100 ml with 0·8% reticulocytes. IVP: no anatomical abnormality of the renal tract. A percutaneous renal biopsy was performed: histology was compatible with either a focal and local glomerulonephritis with moderately severe nephron loss, or an interstitial nephritis with focal glomerular changes. Although positive serological evidence was absent, the combination of anaemia with reticulocytosis, transient eosinophilia and focal glomerular changes was suggestive of a systemic sensitivity phenomenon. On this basis prednisolone 20 mg/day was started.

Investigations were repeated after two months of corticosteroid therapy. The patient felt unwell, had headaches and anorexia. The haemoglobin was unchanged, the plasma creatinine had risen to 2·4 mg/100 ml and creatinine clearance fallen to 27 ml/min. Ampicillin (1 g/day) was added to the regimen on the basis that the renal interstitial changes might represent a chronic intrarenal infection. There was initially a short-lived improvement in well-being, but no change in renal function. Plasma calcium was 14·5 mg/100 ml, inorganic phosphate 3·6 mg/100 ml with a total protein of 6·7 g/100 ml. Serum alkaline phosphatase 5·2 KA units/100 ml. Urinary calcium 325 mg/day. (An 'average' diet was taken.)

The patient was re-admitted in mid-May of the same year for metabolic study. Renal function remained moderately severely impaired, plasma calcium was 12·8 mg/100 ml with a 24-hr urinary calcium excretion of 450–500 mg. Eventually the additional history was obtained that for the previous 7–8 years the patient had been regularly taking 100,000 i.u. of vitamin D daily, initially prescribed for finger nail splitting. From 31 May 1967, vitamin D was withdrawn and the prednisolone tapered off.

From being moderately unwell, the patient over a period of 2–3 weeks deteriorated markedly developing an agitated depression, requiring psychiatric advice as an in patient. Physical examination was negative, but as the plasma calcium at the time had fallen to 11·0 mg/100 ml, it was postulated that the symptoms were related to the changing plasma calcium. Accordingly 90 g of calcium gluconate were given intravenously. There was no change in condition. The depression yielded to trimipramine (Surmontil) over 1 month, during which the calcium fell to normal levels. Good health returned and was maintained after withdrawal of the antidepressant. The haemoglobin is now 13·6 g/100 ml, plasma creatinine 0·8 mg/100 ml, and creatinine clearance 85 ml/min (May 1970).

Discussion

The chart demonstrates the biochemical and haematological improvement following withdrawal of vitamin D. During the hypercalcaemia and hypercalcuria the skeleton was radiologically normal. Densitometry measurements by Dr F. Doyle of Hammersmith Hospital of the distal 8 cm of the left and right ulna bones were 434 mg/cm³ and 402 mg/cm³ respectively. These figures are close to the normal mean for age (Doyle, 1961). There was therefore no evidence of bone sclerosis, and the ratio of trabecular to cortical bone was normal. Absence of sclerotic or other bone changes after 7–8 years of vitamin D consumption is surprising.

In some patients being investigated for renal disease the presence of calcium in needle biopsy tissue of the kidneys has led to the diagnosis of a parathyroid adenoma (Evans & Zutshi, 1962; Joekes, 1963). In reviewing the tissue we obtained from this patient, which included twenty-two glomeruli and 5 cm strips of medulla, we were impressed by the absence of any calcium deposits.

The severe renal functional impairment, to approximately one quarter of normal, recovered following withdrawal of the vitamin D and return of the plasma calcium to normal. The glomerular and interstitial changes must presumably be interpreted as caused by either the hypercalcaemia or some other effect of hypervitaminosis D.

The anaemia is of particular interest. With both acute and chronic renal failure a marked diminution in red cell mass occurs with shortening of the red cell survival time. Acute renoprival anaemia
develops rapidly from the time of nephrectomy and does not appear to be related to the severity of the metabolic disturbance consequent upon the renal failure. In chronic renal failure, a clinically significant anaemia does not usually develop until the blood urea is persistently above 100 mg/ml or the creatinine clearance has fallen to less than 25 ml/min (Pryor & Joekes, 1969) although there is no direct relationship between the degree of nitrogen retention and the anaemia (Stewart, 1967). In the present case the serial blood ureas (Table 1) demonstrate that the anaemia is not dependent on the severity of the metabolic disturbance due to the renal involvement. It must be postulated that hypervitaminosis D is a direct or indirect cause of the anaemia, possibly acting by interfering with the renal production of some substance affecting erythropoiesis or red cell survival. Regrettably no observations were made of the red cell mass or red cell survival time. There is no evidence from patients with primary hyperparathyroidism that hypercalcaemia per se leads to an anaemia. We are unable to accept the view of Davies (1960) that with vitamin D poisoning ‘an anaemia invariably occurs and is associated with the uraemia’. Scharfman & Propp (1956) described four cases in which vitamin D intoxication presented with a normochromic, normocytic anaemia. One of these patients, whilst anaemic, had normal renal function and the anaemia resolved on withdrawal of the vitamin. The fact that vitamin D causes an anaemia directly or indirectly in the presence of normal renal function is not demonstrated in the papers of vitamin D poisoning (Kaufman, Beck & Wiseman, 1947; Howard & Meyer, 1948).

It should be emphasized that the recovery of the haemoglobin concentration in our patient, followed withdrawal of the vitamin and occurred without any haematinics.

Vitamin D intoxication may present as a neuropsychiatric problem (Lehrer & Levitt, 1960) or mental depression may complicate a pre-existing hypercalcaemia (Chaplin, Clark & Ropes, 1951) on withdrawal of the vitamin the mental abnormality usually resolves (Anderson, Cooper & Naylor, 1968). In our patient there was no mental ill health until the vitamin was stopped and this was short lived.

Acknowledgments

We wish to thank Miss F. Wadsworth, Medical Artist and Mr R. E. Bartholomew, Photographer, of the Institute of Urology for preparing and processing the charts. We are grateful to Dr G. A. Rose and his staff for the biochemical estimations.

References

Joekes, A.M. (1963) Two unpublished cases.

<table>
<thead>
<tr>
<th>Date</th>
<th>Haemoglobin (g/100 ml)</th>
<th>Blood urea (mg/100 ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 1964</td>
<td>13.0</td>
<td>—</td>
</tr>
<tr>
<td>Aug 1965</td>
<td>9.8</td>
<td>—</td>
</tr>
<tr>
<td>May 1966</td>
<td>9.8</td>
<td>30</td>
</tr>
<tr>
<td>Sept 1966</td>
<td>7.4</td>
<td>63</td>
</tr>
<tr>
<td>Oct 1966</td>
<td>14.0</td>
<td>46</td>
</tr>
<tr>
<td>Jan 1967</td>
<td>8.4</td>
<td>50</td>
</tr>
<tr>
<td>May 1967</td>
<td>8.2</td>
<td>94</td>
</tr>
<tr>
<td>Oct 1967</td>
<td>11.0</td>
<td>59</td>
</tr>
<tr>
<td>June 1968</td>
<td>13.6</td>
<td>43</td>
</tr>
</tbody>
</table>
Hypervitaminosis D, anaemia and renal failure.

R. Gabriel, A. M. Joekes and E. Orton

doi: 10.1136/pgmj.46.537.455

Updated information and services can be found at:
http://pmj.bmj.com/content/46/537/455.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/