Current surveys

Cephalexin—a new oral antibiotic

ALAN BAILEY
M.B., B.S.

A. HADLEY
F.I.M.L.T.

ALLAN WALKER
M.B., B.S., M.R.C.S., L.R.C.P.

D. GERAIINT JAMES
M.A., M.D., F.R.C.P.

Royal Northern Hospital, London, N.7

Summary
The pharmacology, antimicrobial activity and clinical uses of cephalexin, a semi-synthetic derivative of cephalosporin C, are described.

Cephalexin is active, when taken by mouth, against Gram-positive cocci, including penicillinase-producing staphylococci, and against many Gram-negative organisms including Gram-negative rods.

There is a low incidence of side effects.

Introduction
The value of parenteral cephaloridine is so universally established that it highlights the need for a form which is active by mouth. This is now available as cephalexin monohydrate (Wick, 1967; Muggleton et al., 1968), a semi-synthetic derivative of cephalosporin C. It is broad-spectrum, bactericidal, well-absorbed after oral administration, not significantly bound to serum protein, and mainly excreted by the kidneys. The combined experience of laboratory and clinical workers was reviewed on 2 and 3 June 1969 at a symposium in the Royal Society of Medicine, London.

Pharmacology
Following a single dose, peak blood levels are noted at 1 hr in fasting subjects. Food causes a delay in onset, a lower peak and prolongation of the blood levels. Most of it is excreted unchanged by glomerular filtration and tubular secretion in the urine during the first 8 hr after absorption. Probenecid causes retention and delay in excretion (Braun et al., 1968). Serum protein binding is of the low order of 25%. Studies at the Michael Reese Hospital, Chicago (Kabins et al., 1969) relate serum and urinary levels of cephalexin following its oral administration to thirty-five adult patients with creatinine clearances ranging from 174 ml/min down to 0–2.5. The mean serum half-life was 1.2 hr, rising to 22 hr in those with the poorest creatinine clearances; haemodialysis reduced this prolonged serum half-life to 4–5 hr. Mean urinary excretion after single doses was 75% at 8 hr in those with fairly good renal function, and 3–6% at 24 hr in those with the poorest creatinine clearances.

Antimicrobial activity
Cephalexin is active against most Gram-positive cocci including penicillinase-producing staphylococci; C. diphtheriae; Gram-negative cocci, especially N. gonorrhoeae; and a range of Gram-negative bacilli including Esch. coli; Proteus mirabilis, K. pneumoniae, Salmonellae, Shigella and some strains of H. influenzae (Foord et al., 1969). It is not active against Proteus morgani or Proteus vulgaris, which produce a cephalexin-destructive β-lactamase, nor is it active against Pseudomonas or Mycobacteria.

Therapeutic dose
Cephalexin is available as 250- and 500-mg capsules, which should be given in a dose of 1–4 g daily for a week. It is a large capsule to swallow and has an unpleasant taste, which needs to be disguised by an aperitif of the patient’s choice. It is best absorbed from an empty stomach, and the blood level is prolonged by probenecid.

Clinical infections
Urinary tract infections
Faiers, Leigh & Brumfitt (1969) found a 90% cure rate in eighty-nine urinary tract infections, comprising antenatal, hospital or domiciliary infections. Although they were impressed by this overall high-level efficacy, they were deterred by a 35% incidence of side-effects, which included gastro-intestinal symptoms (in nineteen), vulval irritation in eleven and a skin eruption in one patient.

We have found it to be effective in seven of ten (70%) patients with chronic urinary tract infections (Bailey, Walker & James, 1970) but did not find such an alarming incidence of side-effects. Speirs et al. (1969) claim an 80% success rate with urinary tract infections, and toxic effects have not been troublesome in their series. However, their subsequent follow-up rate has not been so promising. Richards & O'Grady (1969) likewise noted that the urine was sterilized by the initial course of treatment, but infection recurred within 7 days of withdrawing the drug in 60% of their series.
This may partly be due to the fact that strains of *Esch. coli* change into filamentous forms when treated with cephalixin. Most are dead, but some revert to normal by cultivation in a cephalixin-free liquid medium (Fujii, Konno & Ubukata, 1969).

Gonorrhoea

Cephalixin in a single oral dose of 2 g was well-tolerated and successful in a series of Bradford patients (Oller & Smith, 1969), and was an acceptable alternative when penicillin was contra-indicated in Birmingham (Fowler, 1969).

Respiratory tract infections

In Johannesburg, Seftel et al. (1969) obtained an overall cure rate of 80% when cephalixin was given in doses of 1 g 6-hourly for 5–10 days to patients with lobar pneumonia (twenty-five), broncho-pneumonia (two), acute or chronic chest disease (six), acute follicular tonsillitis (ten) and tonsillar diphtheria (one).

We have likewise found a good response in twelve of fifteen (80%) patients with lower respiratory tract infections, when using only 500 mg four times daily for 7 days (Bailey et al., 1970).

Toxicity

It is a safe oral antibiotic with a relatively low incidence of side-effects when given in doses of 500 mg four times per 24 hr. Reported side-effects include gastrointestinal symptoms, including sore mouth, and pruritus of pregnancy. Its lack of toxicity makes it a particularly welcome new antibiotic for use in patients with poor renal function (Kabins et al., 1969).

Indications for oral cephalixin

A new oral antibiotic is always welcome in domiciliary practice. Indications for its use are currently as follows:

1. **Penicillinase-producing staphylococcal infections** in penicillin-allergic individuals, as an alternative to parenteral cephaloridine or instead of erythromycin. Marietti, Carlisle & Saslaw (1969) compared and found cephalxin to be as effective as the semi-synthetic penicillins when given by twice-daily intragastric administration to monkeys with penicillinase-producing staphylococcal septicaemia.

2. **Streptococcal septicaemia.** The same workers also found intragastric cephalxin to be life-saving when administered to monkeys with haemolytic streptococcal septicaemia.

3. **Gonorrhoea** which has failed to respond to penicillin or to Septrin, or when the patient is allergic to penicillin and to sulphonamides. In these circumstances the alternatives are parenteral cephaloridine or kanamycin.

4. **Chronic urinary tract infections** as an alternative to ampicillin, Septrin, nitrofurantoin, cephaloridine and the tetracyclines. It is active against *Proteus mirabilis*. It is non-toxic in the presence of the poorest renal function (Kabins et al., 1969).

5. **Gram-negative infections** in general and *Klebsiella pneumoniae* infection in particular, for they are stubborn to treat by all available means.

6. **Upper respiratory tract infections** including streptococcal sore throat and scarlet fever.

7. **Lower respiratory tract infections** as an alternative to ampicillin, Septrin and the tetracyclines.

Acknowledgments

We are grateful to Glaxo Laboratories Ltd and to Eli Lilly Company for generous supplies of oral cephalixin.

References

Cephalexin—a new oral antibiotic

Alan Bailey, A. Hadley, Allan Walker and D. Geraint James

doi: 10.1136/pgmj.46.533.157

Updated information and services can be found at:
http://pmj.bmj.com/content/46/533/157

These include:

Email alerting service
Receive free email alerts when new articles cite this article.
Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/