Case reports

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Before transfusion</th>
<th>After transfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 hr</td>
<td>72 hr</td>
</tr>
<tr>
<td>Haemoglobin (g)</td>
<td>ND</td>
<td>7-5</td>
</tr>
<tr>
<td>PCV</td>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>Plasma free Hb (mg/100 ml)</td>
<td>241</td>
<td>141</td>
</tr>
<tr>
<td>Bleeding time</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Clotting time</td>
<td>No clot</td>
<td>8</td>
</tr>
<tr>
<td>Haemolysins</td>
<td>3+</td>
<td>±</td>
</tr>
<tr>
<td>Serum bilirubin (mg/100 ml)</td>
<td>4-0</td>
<td>4-8</td>
</tr>
<tr>
<td>Urine volume/24 hr (ml)</td>
<td>970</td>
<td>1750</td>
</tr>
<tr>
<td>Haemoglobinuria</td>
<td>4+</td>
<td>1+</td>
</tr>
<tr>
<td>Urobilin</td>
<td>2+</td>
<td>3+</td>
</tr>
<tr>
<td>Blood urea (mg/100 ml)</td>
<td>30</td>
<td>148</td>
</tr>
<tr>
<td>Serum Na (mEq/l)</td>
<td>128</td>
<td>132</td>
</tr>
<tr>
<td>Serum K (mEq/l)</td>
<td>3-8</td>
<td>4-2</td>
</tr>
<tr>
<td>Serum HCO₃ (mEq/l)</td>
<td>21-2</td>
<td>27-6</td>
</tr>
<tr>
<td>SGOT Frankel Units</td>
<td>ND</td>
<td>110</td>
</tr>
<tr>
<td>SGPT Frankel Units</td>
<td>94</td>
<td>96</td>
</tr>
</tbody>
</table>

Acknowledgment

We are greatly indebted to Dr P. E. Gunawardena, Superintendent of the National Blood Transfusion Service for his help in this case.

Reference

Congenital Heinz-body haemolytic anaemia due to Haemoglobin Hammersmith

N. K. SHINTON
M.D., M.R.C.P., M.C.Path.

D. C. THURSBY-PELHAM
M.D., M.R.C.P., D.C.H.

H. PARRY WILLIAMS
M.R.C.S., F.R.C.P.

Coventry and Warwickshire Hospital and City General Hospital, Stoke-on-Trent

The association of haemolytic anaemia with red cell inclusion bodies was well recognized at the end of the Nineteenth Century in workers exposed to coal tar derivatives (Heinz, 1890a, b) and following potassium chlorate poisoning (Reiss, 1882). Since then a variety of drugs and chemicals have been shown to induce the formation of these so called Heinz bodies in large numbers (Dacie, 1967). Small numbers are seen after splenectomy for any cause (Webster, 1949). A child was described by Cathie (1952) who had undergone splenectomy for a congenital haemolytic anaemia and who had a persistently high frequency of red cell Heinz bodies and who had not been exposed to a toxic agent likely to be responsible for the phenomena. A similar case reported by Lange & Ackeroyd (1958) was later shown by Zinkham & Lenhard (1959) to be associated with an hereditary deficiency of the red cell enzyme glucose-6-phosphate dehydrogenase. Anomalies in haemoglobin electrophoresis were noted in cases of congenital Heinz body haemolytic anaemia by Schmid, Brecher & Clemens (1959) and by Scott et al. (1960) without the nature being identified. The association with an identifiable haemoglobin anomaly—Haemoglobin Zurich, was reported by Frick, Hitzig & Betke (1962). Haemolytic episodes here followed the ingestion of sulphonamides. Spontaneous haemolysis with Heinz body formation was later described in association with other abnormal haemoglobins—Haemoglobin Köln (Pribilla, 1962), Haemoglobin Ube-I (Shibata et al., 1963), Haemoglobin Gallier Genova (Sansome & Pic, 1965), Haemoglobin Seattle (Huehns, 1965) and
Haemoglobin St Mary's (Huehns, 1965). A further anomaly of haemoglobin structure—Haemoglobin Hammersmith—was recently described (Dacie et al., 1967). This was based on two unrelated patients, the clinical details of one having been previously reported by Grimes, Meisler & Dacie (1964). The second case is here described.

Case report

The patient (L.W.) was a female born in June 1963 following a normal gestation and delivery. Jaundice was present at birth, the cord blood serum bilirubin being 7-6 mg/100 ml, haemoglobin 13-6 g/100 ml, direct Coombs' test negative. The jaundice cleared after 2 weeks and development was normal until 10 months of age when she was admitted to hospital with gastroenteritis. She was then noticed to be pale and slightly jaundiced with a palpable spleen. Haemoglobin was 6-2 g/100 ml with 46% of red cells being reticulocytes; Romanowsky stained red cells showed hypochromia, much polychromasia, occasional punctate basophilia, spherocytes and orthochromic normoblasts in moderate numbers. No Heinz bodies or intracellular inclusions were seen in vital stained films. The red cell osmotic fragility was increased, lysis beginning in 0-75% NaCl solution and being incomplete in 0-2% solution with an MCF of 0-47% NaCl. After incubation at 37°C for 24 hr, 5% lysis occurred in 0-9% NaCl. Tests for sickling were negative. Direct and indirect anti-human globulin tests were negative. The serum bilirubin at this time was 2-5 g/100 ml (unconjugated) and haptoglobin 20 mg/100 ml. The child was transfused with 200 ml of concentrated red cells which raised the haemoglobin to 13-3 g/100 ml, but it had returned to a level of 9-1 g/100 ml 6 weeks later.

During the next 12 months the haemolytic anaemia persisted and required a transfusion every 6–8 weeks to maintain the level of haemoglobin between 7 and 9 g/100 ml. Examination of red cell enzymes in July 1965 showed a level of glucose-6-phosphate dehydrogenase 227 units (normal range 120–180 units), pyruvate kinase 480 units (normal range 120–180 units) and glutathione reductase 110 units (normal range 100–200 units). Haemolysates contained 17% haemoglobin F; paper electrophoresis at pH 7-5 showed haemoglobin A only.

In August 1965 the red cell survival time was estimated using the patient's own cells tagged with 51Cr; the half-time was only 2 days. Body scanning showed considerable radioactivity over the spleen which reached a peak at 2 days falling steadily over the next 12 days. This was regarded as justifying splenectomy which was carried out in October 1965. The spleen and an accessory spleen weighed together 110 g and showed small Malpighian bodies in which germinal centres were clearly visible. There were moderate numbers of red cells in the splenic pulp together with large deposits of iron pigment, some of which was intra-cellular and some lying free in the splenic pulp. Following the operation, haemolytic anaemia persisted with a haemoglobin level between 7 and 9 g/100 ml; 30–70% of red cells being reticulocytes. The Romanowsky stained cells showed gross distortion with basophilic stippling (Fig. 1). Cells stained with brilliant cresyl blue showed 36% containing inclusion bodies (Fig. 2). Osmotic red-cell-fragility tests showed no change from previous

![Fig. 1. Photomicrograph of Romanowsky stained blood film following splenectomy. There is gross distortion of red cells and basophilic stippling. × 960.](image1)

![Fig. 2. Photomicrograph of Brilliant cresyl blue stained blood film following splenectomy. There are numerous coarse inclusion bodies in the red cells. × 960.](image2)
further evidence of an unstable haemoglobin. Professor Lehman reported that there were no peptide chains carrying charges different from those of normal α- and β-chains of haemoglobin A (α₂β₂) when the haemoglobin was submitted to starch gel electrophoresis in 6 M-urea. On finger-printing and peptide residue analysis the changes were those of an abnormal haemoglobin similar to that found in the case reported by Grimes et al. (1964) which was subsequently termed Haemoglobin Hammersmith.

Since splenectomy, blood transfusion has been found to be required less frequently. She received three transfusions during the 1st post-operative year, only one transfusion during the 2nd post-operative year and none during the past 11 months. Each transfusion has coincided with some form of intercurrent infection. Although her haemoglobin averages 7.5 g/100 ml, her general health has gradually improved; there is no jaundice and she is now free of symptoms. Her height and weight have remained well below the normal range for a girl of her age but rate of growth has improved during the past year.

Family history

Both parents are well and have normal levels of haemoglobin and normal red blood cell appearances. Neither gives a history of anaemia or jaundice. Examination of a male sibling, aged 12 months and of the maternal and paternal grandparents has also shown no haematological abnormality.

Discussion

The clinical and laboratory features of this second case of Haemoglobin Hammersmith are strikingly similar to that reported by Grimes et al. (1964) but both differ from patients with Heinz-body haemolytic anaemia due to other forms of unstable haemoglobin. Both cases with Haemoglobin Hammersmith were females and recognized during early childhood, intermittent jaundice being noticed from birth. In neither case were the Heinz bodies seen until a splenectomy had been performed probably because they had been removed by the spleen without destroying the red cells. Fine intracytoplasmic granules in the cells lining the splenic sinusoids from a patient with Haemoglobin Köln have been demonstrated by Jackson, Way & Woodliff (1967). The red cell inclusions in patients with an unstable haemoglobin are more coarse in appearance than those seen in red cells following splenectomy for other reasons or where they are induced by drugs or chemicals (Fig. 3). This difference might be due to variation in the chemical composition of the precipitated globin. The demonstration of an abnormal haemoglobin in these two cases of Haemoglobin Hammersmith depended finally upon finger printing and peptide analysis but a strong suspicion that a form of haemoglobinopathy was the cause of the Heinz-body haemolytic anaemia was based on simple routine laboratory tests. In neither case was an abnormal haemoglobin shown by electrophoresis on paper or starch gel but both showed a raised level of haemoglobin F. Methaemoglobinemia has sometimes helped in the recognition of an unstable haemoglobin but was not found in the present case. The patient of Grimes et al. (1964) excreted dark urine, the cause not being identified but was probably haemoglobin breakdown products such as dipyrrho compounds (Kreimer-Birnbaum et al., 1966). The most reliable simple method suggesting the presence of an unstable haemoglobin appears to be the occurrence of a precipitate after heating at 50°C a stroma-free and Heinz-body free haemolsate.

The only therapeutic measure for controlling the anaemia in either case was blood transfusion but in both the frequency was decreased following splenectomy. This has also been observed in occasional cases with Haemoglobin Köln (Hutchison et al., 1964; Jackson et al., 1967).

All cases reported with unstable haemoglobin haemolytic disease show the abnormality in the heterozygous state but unlike Haemoglobin Zurich and Haemoglobin Köln, family studies in both cases of Haemoglobin Hammersmith failed to show any haematological disturbance or the presence of an abnormal haemoglobin. This raises the possibility that the abnormality has arisen as a mutation in utero.

Heinz bodies have been shown to be denatured globin-products precipitated into the red cell stroma following irreversible changes in the haemoglobin molecule (Jandl, Engle & Allen, 1960). Where
instability of haemoglobin has been associated with a change in amino acid sequence this has been found in the β chain near the site of haem attachment. In Haemoglobin Zurich: β63 histidine → arginine (Muller & Kingma, 1961) the abnormality occurs in the histidyl residue directly opposite the haem group and linked to it via an oxygen molecule in oxysaemoglobin and via a water molecule in reduced haemoglobin. In Haemoglobin Seattle, the amino acid substitution occurs in tryptic peptide βT-9, an alanyl being replaced by a glutamyl residue at either position 70 or 76. In Haemoglobin Ube-I the reactive cysteine at position 93 is blocked, and this abnormality is also close to the haem group attachment. The change in Haemoglobin Köln is β98 valine → methionine and this is adjacent to the haem plate; in Haemoglobin Hammersmith phenylalanine is replaced by serine at position 42 which is in planar relation to the porphyrin ring of the haem plate. While this explanation for an unstable haemoglobin molecule has strong support there remains the possibility that haemolysis could be caused by an interaction of the abnormal haemoglobin with an enzymic defect in the red cell metabolism.

Acknowledgments
We wish to thank Professor H. Lehmann for help in the preparation of this paper, the staff of the M.R.C. Abnormal Haemoglobin Research Unit, Department of Biochemistry, University of Cambridge for the detailed haemoglobin analysis, and Dr A. J. McCall for details of the splenic histology.

References
Congenital Heinz-body haemolytic anaemia due to haemoglobin Hammersmith.

N. K. Shinton, H. P. Williams and D. C. Thursby-Pelham

Postgrad Med J 1969 45: 629-632
doi: 10.1136/pgmj.45.527.629

Updated information and services can be found at:
http://pmj.bmj.com/content/45/527/629.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/