TREATMENT — THE RESISTANT CASE

Is there a place for proteinase inhibition?
A review of the literature

G. D. LISTER
University Department of Surgery, Glasgow Royal Infirmary

Summary
The evidence demonstrating excessive proteinase activity in states of shock is reviewed. The capacity of extrinsic inhibitors to control such activity is indicated and the literature showing the value of inhibitors in treating shock is summarized. Three principles to be observed in the use of exogenous inhibitors are proposed.

PROTEINASE is the generic term for proteolytic enzymes. Proteolysis occurs in the processes of digestion and during autolysis. In more controlled form, it is the basis of certain homeostatic processes in which the proteinases are activators and pro-activators, the control being exercised by inhibitor systems.

In disease or following trauma, the activity of these systems increases as an essential part of the attempt to restore the physiological state. This is desirable, but on occasion activity increases to an extent which overwhelms the intrinsic inhibitor mechanisms. This is highly undesirable as it results, separately or in combination, in acute haemostatic defects, intravascular coagulation, redistribution of the blood volume and, as a result, in profound disturbances of haemodynamics which contribute to inadequate tissue perfusion. In such circumstances of excessive, harmful proteinase activity, the temporary redress of the disturbed intrinsic balance by the administration of exogenous proteinase inhibitors would be a desirable therapeutic step.

Many such extrinsic inhibitors, ranging from aspirin to certain amino acids, are available and they have been reviewed by Back (1966). Their very varied activity has been analysed, with particular reference to fibrinolysis, by McNicol & Douglas (1964) who showed that only six are of practical value:

- ε-Amino caproic acid (EACA).
- Tranexamic acid.
- 1-(Aminomethyl)cyclohexane - 4 - carboxylic acid (AMCHA).
- p-Aminomethyl benzoic acid (PAMBA).
- Parotid proteinase inhibitor (Trasylol).
- Pancreatic proteinase inhibitor (Iniprol).

Of these, only EACA and parotid proteinase inhibitor appear sufficiently frequently in the literature to warrant review.

In order to present the evidence for the involvement of proteinase systems in the state of shock and to examine the value of extrinsic inhibition in controlling those systems and in treating shock, the three hinted at above, namely coagulation, fibrinolysis and vasoactivity, will be considered. Hardaway (1965) and his group of workers (Rutherford, West & Hardaway, 1966) have shown that intravascular coagulation is a feature of haemorrhagic, endotoxic and traumatic shock; Nordström, Olsson & Blomback (1965) have demonstrated increased circulating thromboplastin after surgery and shown experimentally that equivalent levels lead to massive intravascular thrombus formation; such thrombi have been observed by electron microscopy in endotoxin shock by McKay, Margaretten & Csavossy (1967). The anticoagulant properties of parotid proteinase inhibitor in clear contrast to EACA have been shown by Amris (1966) and by Dubber et al. (1968), while Nordström et al. (1965) in the work referred to above, showed that it prevented intravascular coagulation in their experimental preparations.

Uninhibited vasoactivity with resultant widespread vasodilatation and pooling of blood mainly in the splanchic bed has been shown to be a factor in endotoxin shock by several groups (Gilbert, 1960; Weil, Sudnamis & Shubin, 1962; Brockman, Thomas & Vasko, 1967). Such abnormal vasodilatation in other forms of refractory shock has been postulated, and, in an attempt to assess this, estimation of vasoactive polypeptide activity using the method of Diniz and his co-workers (1961) has been undertaken. The literature is summarized in Table 1, all the papers having shown evidence of increased vasoactivity, while the three groups who assessed proteinase inhibition found it to be of value. Attar et al. (1967) have found a correlation clinically between mortality and depletion of vasoactive precursors. Corrado, Reis & Carvalho (1966) have shown experimentally that irreversible shock is associated with a fall of bradykininogen to less than 50% of control levels.
Table 1. Documented evidence: increased vasoactive polypeptide links in shock

<table>
<thead>
<tr>
<th>Aetiology</th>
<th>Reference</th>
<th>Clinical</th>
<th>Experimental</th>
<th>Proteinase inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemorrhage</td>
<td>Webster & Clark (1959)</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Meyer (1966)</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Attar et al. (1967)</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Endotoxin</td>
<td>Webster & Clark (1959)</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Kobold, Lucas & Thal (1963)</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Meyer & Werle (1964)</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Greeff (1966)</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Meyer (1966)</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Attar et al. (1967)</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Rothschild & Castania (1968)</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Anaphylaxis</td>
<td>Beraldo (1950)</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Greeff (1966)</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Back (1969)</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Thal, Kobold & Hollenberg (1963)</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Kobold & Thal (1963)</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Ryan, Moffat & Thompson (1965)</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Greeff (1966)</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Attar et al. (1967)</td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

In its most overt and dramatic form, excessive fibrinolytic activity as a complication of surgical procedures and obstetric accidents is widely recognized and the literature has been reviewed by Sharp (1964) who also lays down strict criteria for the use of EACA in combating such states. That fibrinolysis occurs to a sub-clinical degree in disease and following trauma or immunological challenge has been demonstrated by several groups and the evidence is summarized by Sherry, Fletcher & Alkjaersig (1959) and by Eisen (1964).

In such lesser degrees of uncontrolled fibrinolysis, particularly in view of the frequently coincidental presence of intravascular coagulation, EACA, with its propensity to induce coagulation, can have no place. It is, therefore, pertinent that the ability of Trasylol to inhibit fibrinolysis has been shown, experimentally and clinically, by several groups (Steichele & Herschlein, 1961; Beck, Schmutzler & Duckert, 1963; Tice et al., 1964; Amris, 1966), while the kinetics of the inhibition have recently been analysed by Dubber and her co-workers (1968).

Indeed, in attempting to reverse such combined sub-clinical defects of haemostasis and vasoactivity as would contribute to the inadequacy of tissue perfusion, parotid proteinase inhibitor offers several advantages over EACA:

1. EACA, while inhibiting plasminogen activation, is less powerful an inhibitor of plasmin activity (Tice et al., 1963; McNicol & Douglas, 1964);

2. EACA does not inhibit kininogen activation (Eisen, 1964);

3. EACA carries a risk of intravascular coagulation (Naeye, 1962; Sharp, 1964; Crosby, 1967); and

4. Parotid proteinase inhibitor has approximately 1000 times the molar potency of EACA (Dubber et al., 1968).

The evidence presented that excessive proteinase activity may occur in states of shock does not show whether that excessive activity is a contributory factor to the severity of shock or merely one of its consequences. It does not follow, therefore, that to show that such excessive activity can be controlled by exogenous inhibitors means that their administration will assist in treating shock. It is necessary to seek evidence on the direct value of proteinase inhibition in improving shocked cases.

Proteinase inhibitor has been shown experimentally to reduce mortality and prolong survival in shock due to endotoxin (Czeizel, Gorgenyi & Kertal, 1966), trauma, anaphylaxis (Back, 1969) and peritonitis (Meyer, 1965). Clinically, Tice et al. (1963, 1964) have used Trasylol to advantage after extracorporeal circulation, while Mörll & Heller (1969) found that its administration reduced by half the mortality due to peritonitis in a controlled series. In the remaining literature, pancreatitis is the model against which proteinase inhibition is measured. As arrest of trypsin autodigestion must play an important role in any benefit which extrinsic inhibition confers, such work is not relevant to this assessment.

Conclusion

Thus, direct evidence defining the value of proteinase inhibition in the treatment of shock is scanty. It would be, therefore, premature to recommend its use. On the same grounds of lack of evidence it cannot be condemned but must be referred for trial.

In approaching such trials, three rules must be
clearly enunciated and closely observed:
(1) The dosage must be adequate. That recommended has risen steadily (Forell, 1960) in a somewhat empirical fashion, which has suggested inefficacy and inspired scepticism, but the titration studies of Goldberg & Roy (1965) have demonstrated that doses in excess of 100,000 units/hr are essential.

(2) Inhibitor must be administered by continuous infusion, its half-life in plasma being only 8 min.

(3) The dynamic nature of the state which is being treated allied with the need to inhibit, rather than combat or reverse, dictates that only immediate administration can offer hope of success (McHardy et al., 1963; McCutcheon & Race, 1963; Smith et al., 1963; Meyer & Werle, 1964; Back, 1969).

References

Is there a place for proteinase inhibition? A review of the literature

G. D. Lister

Postgrad Med J 1969 45: 571-573
doi: 10.1136/pgmj.45.526.571

Updated information and services can be found at:
http://pmj.bmj.com/content/45/526/571

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/