FAT EMBOLISM IN FOUR PATIENTS TREATED FOR FRACTURES

DANIEL C. AGBO, M.B., Ch.B. Glas.

Registrar in Orthopaedic Surgery,
Hull Royal Infirmary.

Fat embolism is well recognised to be an important though relatively infrequent complication of injuries of long bones. It has been shown that this is common in surgical or accidental damage to soft and skeletal tissues (Feltier, 1956), but that only in multiple fractures of bones is it severe enough to produce recognisable clinical symptoms and signs. The time when fat embolism was a post-mortem diagnosis has passed to one in which it is diagnosed early and in some cases successfully treated. Now, though it is recognised earlier, the treatment is still largely empirical and symptomatic. Recorded below are the case histories of four patients recently seen and treated in the orthopaedic unit.

Case No. 1.

J.H., a man aged 24 years, was knocked down by a car and admitted to hospital on January 13, 1961. His injuries were: a comminuted fracture of the mid-shaft of the right femur, an open comminuted fracture of the shaft of the right tibia, a fractured right fibula, a rupture of the anterior cruciate ligament of the right knee, and a fracture of the base of the terminal phalanx of the right hallux. His femur was reduced and immobilised on a splint on the day of admission. The following day an open reduction and screwing of the fractured right tibia was performed under a general anaesthetic. Forty-eight hours after admission he developed sweating, abdominal pain and petechial haemorrhages in the skin of the pectoral region. His temperature rose to 101.3°F and remained so for two days. A provisional diagnosis of fat embolism was made. Abdominal examination revealed no evidence of injury to the viscera. In the urine fat droplets were recognised and the ether-soluble fat content was 8 mg./100 ml. No count of blood chylomicrons was made. Hb 65%. A chest X-ray showed fine mottling in the lung fields. These findings confirmed the diagnosis of pulmonary fat embolism. No specific treatment was instituted. All the symptoms cleared up within two days. He was discharged on May 12, 1961. Further out-patient treatment for his fractures was uneventful and he was finally discharged on the May 31, 1962.

Case No. 2.

W.I., a man aged 32 years, was knocked down by a car on May 18, 1962, and admitted to hospital suffering from an open fracture of the right tibia, a closed fracture of the left tibia and fibula, and a subtrochanteric femoral fracture. There was no history of head injury and he was fully conscious. On the day of admission under a general anaesthetic his leg fractures were manipulated and immobilised in plaster and the subtrochanteric fracture treated by skeletal traction and a Thomas's splint. He recovered full consciousness. The next morning he became drowsy and sweated profusely. He developed petechial haemorrhages in the skin at the base of the neck and upper part of the chest. Over a period of four to five hours he became deeply unconscious with decerebrate rigidity and incontinence of urine and faces. He had a pyrexia of 102°-106°F which lasted for one week. Chest and abdomen: no abnormal physical signs. Occasional Cheyne-Stokes respiration. A diagnosis of cerebral fat embolism was made. The only confirmatory neurological finding was a local infarct in the fundus of the left eye.

He was given anticoagulants, starting with heparin and continuing with dintevan within forty-eight hours. Sedation with sodium gadenal was necessary as the patient was very restless and was pulling down the splints used to immobilise his fractures. He was given penicillin and erythromycin prophylactically because of the open fractures he sustained. He was cooled with ice packs and by tepid sponging, and began to show some improvement in one week. He was no longer deeply comatose and could respond to painful stimuli. He recovered full consciousness and mental faculties in three weeks. Control of micturition returned in seven weeks. The anticoagulant therapy was given for three weeks. He was discharged from the ward on December 7, 1962, for out-patient treatment. This out-patient supervision was uneventful and he was finally discharged on April 25, 1963, very fit and back to his former job as a machinist.

Case No. 3.

D.W., a man aged 22 years, who on September 29, 1962, while driving a motor cycle side-car combination ran into a post and was admitted to hospital with a comminuted fracture at the junction of the middle and lower thirds of the shaft of the right femur, an open dislocation of the left cuboid, an open fracture of the terminal phalanx of the left hallux, and multiple skin abrasions. He was shocked; there was no head injury.

He was given two pints of blood. Under a general anaesthetic given on the day of admission the fractures were manipulated and immobilized. He did not regain consciousness and twenty-four hours later developed decerebrate rigidity and petechial haemorrhages in the skin of the base of his neck and upper chest. There was marked respiratory
difficulty for which a tracheotomy was performed on October 1, 1962, three days after admission. Temps. 102°-103°F; the pulse rate rose to 160/min. He became incontinent of urine and faces. Investigations showed a segmental collapse of the lung and persistently low Hb. of 62-67% in spite of the five more pints of blood given. An infarct was seen in the fundus of the left eye. A diagnosis of combined cerebral and pulmonary fat embolism was made.

He was given antibiotics and seven pints of blood over a period of two weeks. Prolonged cooling with ice-packs was necessary. The patient was unconscious for three weeks; his pyrexia lasted for nine days, incontinence of urine and faces for nine weeks. He regained control of his bowel function before bladder function. He was discharged from the ward on the January 9, 1963, and his treatment continued as an out-patient. His fractured femur united and he returned to work. Mentally he remained dull though his concentration had improved and he had no headaches.

Case No. 4.

G.B., a man aged 22 years, was knocked off his bicycle by a car on November 2, 1962, and admitted to hospital suffering from a comminuted transverse fracture of the lower third of the shaft of the left femur and a comminuted fracture of the patella without separation. There was no history of head injury. Under a general anesthetic his femur was manipulated and immobilised on a Thomas's splint. He recovered full consciousness after his anesthetic.

The next day he became drowsy, confused and restless, passing into coma with incontinence of urine and faces, and difficult respiration for which a tracheotomy was performed on November 4, 1962. He developed petechial haemorrhages in the skin at the base of his neck and front of his chest, and the temperature reached 103°F. on the second day after admission. The CNS signs were variable and included dilatation of the pupils to light and decerebrate rigidity. A clinical diagnosis of combined cerebral and pulmonary embolism was made.

Treatment consisted of the administration of penicillin and tetracycline, sedation with sodium gardenal and cooling the body with ice packs. He remained unconscious for a fortnight. There was hyperpyrexia for four days and pyrexia for another week. He became fully continent of urine and faces in three weeks. He recovered normal mental faculties quickly after regaining consciousness. He was discharged from the ward on the 12th February, 1963, and his treatment continued as an out-patient. At the time of writing the patient's fractures had healed and he was back at work.

Discussion

These four patients all had multiple fractures involving long bones. Fat embolism occurred in all within forty-eight hours of injury. The symptoms and signs varied depending on whether the fat embolism was pulmonary, cerebral or combined. There is respiratory distress in both cerebral and pulmonary types of fat embolism. The signs in the cerebral type were variable and depended on the severity. But one clinical sign that was always present and could be regarded as pathognomonic of fat embolism was petechial haemorrhages in the skin characteristically confined to the base of the neck and the pectoral regions (Hamilton, Bailey, 1960).

Aetiology.

It is generally agreed that the bone marrow and blood lipids contribute to the formation of the fat embolism, the bone marrow supplying the bulk of the embolic fat. This was proved by radioactive iodine-tagged fat studies in dogs, and by the finding of bone marrow fragments in the lungs in cases of fatal embolism.

The fat globules from the bone marrow under pressure from the haematoma at the fracture site are carried to the lungs where most of the globules are arrested (Cobb and Hillman, 1961), but with increasing amounts of fat in the circulation some of the globules are further dispersed into the systemic circulation and thence into other vital structures like the brain, liver and kidney. The symptoms depend on the site at which most of the fat globules are arrested, being pulmonary, cerebral or a combination of both.

A positive diagnosis of fat embolism can usually be made clinically. Laboratory findings are only ancillary and those reported to be helpful are:

1. Radiograph of the chest.
2. The presence of fat droplets in venous blood and urine and sometimes in the saliva.
3. The blood chylomicron count.

It has been observed that the estimation of serum lipase and haemoglobin help to indicate when a patient is likely to develop fat embolism (Cobb and Hillman, 1961). For example, a rise in serum lipase and a fall in haemoglobin occur in the early phase of symptoms. But as yet no single simple laboratory procedure is known which when performed in a severely injured patient would warn of impending fat embolism.

Treatment may be either preventive or definitive. Under preventive treatment are such measures as the avoidance of unnecessary manipulation of fractured limbs, correction of hemorrhagic shock and the proper use of tourniquets, all of which are reputed to minimise the risk of fat embolism (Peltier, 1956; Whitson, 1951). But these measures even when meticulously carried out do not obviate the risk.

Restlessness, muscular spasm and decerebrate rigidity are treated by sedation. For respiratory distress oxygen has been given and in some cases tracheotomy and the use of a mechanical respirator have been necessary. When the temperature-regulating mechanism has been deranged, with hyperpyrexia, cooling with ice packs is required (Newman, 1962). In two of our cases, 2 and 3, we consider that this measure saved the patient's life.

But the most-needed definitive treatment is one which would deal directly with the fat globules in the circulation. The use of intravenous sodium
desoxycholate (10 ml. of 20% solution) which increases the emulsifying power of the blood and so reduces the size of circulating fat globules is limited because in larger doses it produces haemolysis. Next, anticoagulant therapy has been advocated (Cobb and Hillman, 1961). Heparin is supposed to alter the lipoprotein density and would also prevent thrombosis if an occlusion did occur from the fat globules. From this small series, the impression gathered was that severe cases treated with anticoagulants recovered from the effects of fat embolism sooner than those treated without.

The treatment of these four cases has been discussed briefly; they are presented because they recovered in spite of prolonged unconsciousness, hyperpyrexia, respiratory and neurological involvement. It is also apparent that at the moment, beyond reduction of the hyperpyrexia, the quieting of the restlessness, and provision of a free airway for the patient with respiratory distress there is little to be done except to give anticoagulants, which did not interfere with fracture healing.

I wish to express my gratitude to Mr. R. C. Tatham and Mr. C. R. Berkin, Orthopaedic Surgeons, for permission to publish these case histories of patients treated under their care and for the helpful advice given in the presentation of this article.

REFERENCES


NEWMAN, P. H. (1962): Fat Embolism. ibid, 44B, 761.


INTRACTABLE PRURITUS DUE TO HEPATIC CIRRHOSIS RELIEVED BY CHOLESTYRAMINE

KALMAN KECZKES*, M.B.Glas., M.R.C.P.E.
Registrar
Department of Dermatology, Glasgow Royal Infirmary.

PRURITUS due to liver disease is almost always due to biliary obstruction with associated retention of bile salts and other ingredients of the bile. The pruritus is always troublesome and its control is notoriously unsatisfactory. We report a case of hepatic cirrhosis whose pruritus was successfully relieved by cholestyramine.

Case Report

A married woman aged 47 attended the dermatological out-patient department on December 5th, 1962, complaining of severe generalised pruritus and tiredness for the last 5 years. At the beginning of her illness she had had bouts of violent sickness and vomiting at intervals of 6 to 7 months, but this had not troubled her much lately, although she had to avoid fried food because it made her feel sick.

She had scarlet fever in childhood. She had lived in N. Rhodesia from 1940 to 1946 where she suffered from enteritis and several mild attacks of malaria, from which she had been free since her return.

She was seen elsewhere for her skin complaint in 1960 and was put on Liq. Arsenicals (Fowler's solution), which controlled her itching for the first time. She was kept on arsenic for about a year with reasonable control of pruritus, and thereafter this regime was stopped. Soon afterwards the pruritus returned, no other means could be found to control it, and it eventually got so bad that it interfered seriously with her sleep.

Physical examination revealed a thin, anxious looking woman with an earthy discolouration of the whole skin. There were numerous scratch marks on the body and limbs and some scattered superficial scars on the trunk and upper limbs. The provisional diagnosis was dermatitis herpetiformis and she was put on Dapsone 100 mg. b.d., which failed to control the pruritus. She was accordingly admitted on the 23rd April, 1963 for further investigation.

In hospital she was noticed to have pale coloured stools and dark urine occasionally, and her liver was palpable three finger breadths below the costal margin.

Investigations: Hb. 11 g./100 ml. PCV 35% MCHC 32%. The blood film was normal and Heinz bodies could not be found. Thrombostest 100%. ESR 37
Fat Embolism in Four Patients Treated for Fractures

Daniel C. Agbo

Postgrad Med J 1965 41: 153-155
doi: 10.1136/pgmj.41.473.153

Updated information and services can be found at:
http://pmj.bmj.com/content/41/473/153.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/