Megaloblastic Anaemia in Haemochromatosis

Medical Registrar, University College Hospital, W.C.1.

In 1877 Müller described a marked bronzed discolouration of the skin in some patients considered to have pernicious anaemia. This observation, confirmed later by Immerman (1879) is likely to be the first record of an association between a macrocytic type of anaemia and haemochromatosis. Since that time French (1909), Roth (1915), Bork (1928), Cain (1940), Hotz (1944) and Harvier and Mallarmé (1938) have all described similar findings.

In reporting nine more cases with this association Koszewski (1952) suggested that the macrocytic megaloblastic anaemia complicating haemochromatosis might not be true pernicious anaemia, and more recently Granville and Dameshek (1958) have been able to obtain an excellent clinical and haematological response to therapy with folic acid in a subject with haemochromatosis and this type of anaemia, as have Brunner and Frick (1963) who also studied two similar cases which responded specifically to folic acid therapy.

Two more cases in which megaloblastic erythropoiesis has complicated haemochromatosis have been seen but in these two patients the anaemia has been refractory to both vitamin B₁₂ and folic acid therapy.

Case No. 1

Mr. A.T.G., 63, was referred to the Royal Infirmary, Sheffield, in June, 1960, for investigation of a refractory megaloblastic anaemia. He gave a three year history of increasing breathlessness, weakness of the legs and paræsthesia of the hands and feet. He had received regular injections of Vitamin B₁₂ and oral folic acid during the preceding 12 months without any subjective or haematological improvement.

Examination revealed a pale man with no clinical icterus. The skin was not pigmented, hair distribution was normal, there was no palmar erythema, and no spider naevi were seen. The liver was easily palpable 3 fingers-breadth below the right costal margin, being firm and regular. The spleen was not palpable. There was no ascites and no dilated veins were seen on the abdominal wall. There were no abnormal signs in the central nervous system.

Investigations: Hb. 9.1 g.%. Many of the red cells were target cells, with the remaining cells being either normochromic and normocytic or hypochromic and microcytic. Occasional cells were macrocytic. The white cells and platelet counts were normal. The bone marrow showed megaloblastic erythropoiesis. Free gastric hydrochloric acid was present. Total serum bilirubin 1.0 mg.%. The urine contained no excess of bilirubin or urobilinogen. Bromsulphthalein retention test showed blood levels of 33, 30 and 18%, remaining at 30, 45 and 60 minutes. Serum albumin level 5.1 g.%. Electrophoresis showed a diffuse increase in the γ-globulin. Liver biopsy showed evidence of haemochromatosis.

The serum iron was 265 μg./ml., total iron binding capacity 275 μg./ml. A glucose tolerance curve gave a fasting level of 89 mg./100 ml. with figures of 150, 205, 208, 165 and 130 at each successive half-hour interval with no glycosuria. Faecal fat excretion normal.

Two 24-hour urine specimens after a 10 g. tryptophane load contained only 3 and 8 mg. xanthurenic acid, thus demonstrating no evidence of pyridoxine deficiency.

Progress. Since 1960 this man has remained in fair health with a steady haemoglobin level of 9-10 g.%. In 1963 he was given a course of parenteral folic acid 5 mg. twice weekly for 3 months without any further improvement.

Case No. 2

Lt.-Col. H.D.M., 61, was admitted to University College Hospital in October, 1962, for investigation of a refractory megaloblastic anaemia.

During the preceding 18 months he had become increasingly tired, lethargic, short of breath, and had had some ankle swellings. In April, 1962, he was found, in another hospital, to have a megaloblastic macrocytic anaemia. Treatment with injections of Vitamin B₁₂ and later folic acid orally, 5 mg. q.d.s., for several months, together with blood transfusions, failed to improve his condition.

Examination revealed him to be clinically anaemic. The skin was not pigmented, body hair was scanty but of normal distribution, there was no palmar erythema, and no spider naevi were seen. There was no glossitis. Abdominal examination was normal, neither the liver nor the spleen were palpated.

Investigations. Initial haematological findings showed: Hb. 11.7 g.%, RBC 3,600,000, CI 1.0, MCD 7.1, MCV 100μ, MCHC 32%. The red cells showed marked anisocytosis and moderate hypochromia. WBC 4,100 cu. mm. Normal differential. Platelets present in normal numbers. Reticulocyte count 0.5%. Bone marrow examination showed a highly cellular marrow with megaloblastic erythropoiesis. Augmented histamine test showed the presence of free acid. No excess of FIGLU (formimino-glutamic acid) or urocanic acid after histidine loading. Serum folic acid activity 25 μg./ml. (normal range 5.6-23 μg./ml.). Direct Coombs' test negative. Serum bilirubin 1.7 mg.%, direct reaction negative. Urine showed no excess of bilirubin or urobilinogen. Serum proteins—total 6.5 g.%(albumin 4.0 g, globulin 2.5 g.). Electrophoresis showed a small increase in the α₂-globulin. Empirical liver function tests normal. Serum iron 181 μg./ml. 100% saturation. Urine—no glucose detected on initial examination. Barium meal and follow-through showed a normal stomach, duodenum and small intestine. Faecal fat excretion normal.

Progress. In view of the failure of this anaemia to respond to either folic acid or vitamin B₁₂, the
patient was given steroid therapy, in the form of prednisolone, 15 mg. q.d.s., and testosterone, 50 mg. q.d.s. This former drug provoked an acute diabetic state which required treatment with diet and insulin. In spite of repeated transfusions his condition deteriorated and he died in February, 1963.

Necropsy (Dr. P. M. Sutton). This showed clearly defined evidence of haemochromatosis. The liver weighed 2680 g. and on section was deep bronze in colour with early fibrosis. Histology of the liver showed pigment cirrhosis with no infiltration. The pancreas was fibrotic and microscopy revealed iron pigment in both islets and acini. The spleen was enlarged (510 g.) with ante-mortem thrombus in the splenic vein. The lumbar spine and left femur contained hypercellular bone marrow showing megaloblastic erythropoiesis.

Discussion

Although many of the earlier writers ascribed the macrocytic type of anaemia associated with haemochromatosis to pernicious anaemia, it seems likely from more recent work that this is incorrect.

Koszewski (1952) considered that the morphological changes in the peripheral blood in his patients differed from that expected in true pernicious anaemia because there was less anisocytosis and poikilocytosis and only two out of his nine patients showed any red cell precursors response to crude liver extract. Granville and Dameshek (1958) were able to exclude vitamin B$_{12}$ deficiency as an aetiological factor in their patient by failing to obtain any haematological response with parenteral vitamin B$_{12}$; furthermore, the presence of free gastric hydrochloric acid excluded the possibility of an associated pernicious anaemia. Brünner and Frick (1963) also confirmed this by using 57Co labelled B$_{12}$ in the studies in their two patients to demonstrate normal B$_{12}$ utilisation, before obtaining good clinical and haematological responses with folic acid.

The prevalence of macrocytosis in patients with hepatic disease is well known, but megaloblastic erythropoiesis is rare (Jandl, 1955). It has been shown that patients with hepatic cirrhosis and megaloblastic erythropoiesis have normal serum B$_{12}$ levels and show marked clinical and haematological responses to small doses of folic acid (Jandl and Lear, 1956). More recently it has been suggested that folic acid deficiency in liver disease may be primary or secondary. In the primary form there is a total body deficit, whereas in the secondary form the body stores are normal, but there may be a failure of utilisation of folic acid. In this latter form the liver enzymes are defective and folic acid is not converted to active folinic acid forms (Carter, Heller, Schaffner and Korn, 1961). Thus in haemochromatosis the hepatic cirrhosis may be responsible for either a primary or a secondary folic acid deficiency.

There is also the theoretical possibility of impaired absorption of folic acid in haemochromatosis due to the extensive deposits of hemosiderin in the intestinal mucosa. As a result, in haemochromatosis, there may be both a defective absorption of folic acid and a secondary inadequate storage and utilisation of folic acid due to impairment of liver function. These features suggest that the anaemia in haemochromatosis could be due to a folic acid deficiency and this contention receives the support of the cases described by Granville and Dameshek (1958) and Brünner and Frick (1963).

In the two cases described in this paper the pathogenesis of the megaloblastic anaemia is complex and therapy has not been successful in restoring haemopoiesis to normal. In Case 1 there was no response to large doses of parenteral B$_{12}$ and oral and parenteral folic acid. Pyridoxine deficiency, described as being responsible for anaemia in haemochromatosis (Maier, 1957), was excluded by a tryptophane loading test. In Case 2, in whom the diagnosis of haemochromatosis was established only after death, parenteral vitamin B$_{12}$ and oral folic acid were given. Parenteral folic acid was not administered in this case but the finding of a normal serum folic acid level and a normal excretion of FIGLU after histidine loading probably excludes any primary deficiency. It seems unlikely that the hemosiderosis of the intestinal mucosa could prevent all absorption of folic acid particularly when large doses of folic acid were being administered in relation to the tiny physiological requirements which have been estimated as being approximately 50 µg./day. (Herbert, 1962).

It would appear, therefore, that the megaloblastic anaemia which sometimes complicates haemochromatosis may be unresponsive to folic therapy. This suggests that there is a secondary deficiency of folic acid which is presumably due to an enzyme block in the utilisation pathway of folic acid in the liver to active folinic acid forms.

Summary

Two patients are described in whom megaloblastic erythropoiesis occurred in association with haemochromatosis. In both cases the anaemia was resistant to treatment with both vitamin B$_{12}$ and folic acid. The mechanisms in the production of this type of anaemia are discussed.

I thank Prof. T. A. J. Prankerd, Dr. E. K. Blackburn and Dr. H. P. Brody for permission to publish these cases. I am also grateful to Prof. Prankerd for reading the script and for his helpful criticisms.

REFERENCES

Nephrotic Syndrome Due to Thrombosis of the Inferior Vena Cava and Renal Veins

T. J. Bayley, M.B., M.R.C.P.
Donald Heath, M.D., Ph.D., M.R.C.P.

J. Hardwicke, M.D., B.Sc.
A. G. W. Whitfield, M.D., Ph.D., F.R.C.P.

Departments of Medicine, Pathology and Experimental Pathology, Queen Elizabeth Hospital, University of Birmingham.

Fifty years ago, Rowntree, Fitz and Gerachty (1913) described the proteinuria which occurred in animals following obstruction of the inferior vena cava proximal to the renal veins or of the renal veins themselves. In the same year Shattock (1913) recorded the case of Dr. Rivers Pollock, the obstetric physician to the Westminster Hospital, who sustained a traumatic thrombosis of the inferior vena cava and thereafter had gross albuminuria which persisted until his death 25 years later from streptococcal septicemia. It was not until 1939 that the first full description of the nephrotic syndrome associated with thrombosis of the renal veins and inferior vena cava appeared (Derow, Schlesinger and Savitz, 1939). Since then other cases have been recorded (Blainey, Hardwicke and Whitfield, 1954; Harrison, Milne and Steiner, 1956; Pollak, Kark, Pirani, Shafter and Meuhrrcke, 1956; Hasson, Berkman, Parker and Rifkin, 1957; Blainey, Brewer, Hardwicke and Scothill, 1960). This communication describes a further patient observed closely from onset to death from uraemia eight years later and in whom there were many features of particular interest.

Case Report
In April 1955 a previously fit male aged 27 years used a breast drill from the right groin for some hours and the following day he experienced a severe aching pain in this region. Twenty four hours later the whole of the right leg became swollen and he was admitted to the Royal Salop Infirmary where he was given ten days heparin therapy under which the pain and swelling subsided. Two weeks later edema of the right leg recurred and he was given anticoagulant therapy with phenindione for seven weeks after which he returned to work and wore an elastic stocking. In December 1955 the left leg became edematous and he was re-admitted to the Royal Salop Infirmary. Massive albuminuria was found, phenindione therapy was recommenced and on 17th March, 1956 he was transferred to the Queen Elizabeth Hospital, Birmingham. At this time collateral venous channels were evident on the trunk (Fig. 1) and both legs and the lumbo-sacral region of the back were grossly edematous. The blood pressure was 135/80 mm. Hg. The urinary protein loss fluctuated between 9 and 15 g. daily and the deposit showed 1143 x 10⁶ red blood cells, 15 x 10⁶ white blood cells, 0.2 x 10⁶ hyaline casts and 0.1 x 10⁶ granular casts in twenty four hours (Fig. 2). The blood urea was 35 mg./100 ml. and the creatinine clearance 119 ml./min. The serum cholesterol was 370 mg./100 ml. and the serum protein 5.3 g./100 ml. of which the albumin was 2.20 g./100 ml. The serum complement fluctuated between 0.8 and 1.0 units/ml. The chest radiograph showed a normal cardiac silhouette and clear lung fields. An intravenous pyelogram revealed no abnormality apart from rather dense renal shadows.

Renal biopsy showed no normal glomeruli. In all there was some degree of hialinisation patchily distributed within the glomeruli. Glomerular adhesions and periglomerular fibrosis were present in some glomeruli. The tubules were mainly normal.
Megaloblastic Anæmia in Hæmochromatosis

P. J. Toghill

Postgrad Med J 1965 41: 86-88
doi: 10.1136/pgmj.41.472.86

Updated information and services can be found at:

http://pmj.bmj.com/content/41/472/86.citation

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/