PHENINDIONE NEPHROPATHY WITH
RECOVERY: STUDIES OF MORPHOLOGY
AND RENAL FUNCTION

H. A. Lee, B.Sc.(Lond.), M.B.(Lond.), M.R.C.P.
Medical Registrar
King's College Hospital, London, S.E. 5

C. E. A. Holden, M.B., B.S.(Lond.)
Urological Registrar

Various hypersensitivity reactions secondary to phenindione therapy have been described since its introduction in 1947. Amongst the most severe reactions are those involving the kidney. Transient albuminuria is not uncommon following phenindione therapy (Coon, Hodgson and Dennis, 1953; Goodman and Gilman, 1955). There have been seven reported cases of more severe renal involvement, in four of which the renal morphology has been known (Barritt and Jordan, 1960; Postgraduate Medical School of London; 1960; Galea, Young and Bell, 1963; Baker and Williams, 1963). Only in the last case was renal function investigated fully and correlated with the morphological changes. A further example of phenindione nephropathy, with a successful outcome of medical management, is reported to illustrate a type of renal lesion and change in renal function due to phenindione and to compare it with the case reported by Baker and Williams (1963).

Case Report
A fit civil servant, aged 55, fell off a ladder on March 27, 1963, and sustained a fracture of the left tibia. On March 30 an open reduction of the fracture was performed, and the leg was immobilized in an above-knee plaster. Although the post-operative course was satisfactory it was decided on April 7 to treat the patient with phenindione to prevent phlebo-thrombosis.

On May 1 the patient, then at home, felt unwell, was pyrexial and developed a widespread erythematous skin rash. He was given antihistamines but with little effect. On May 4, because of continuing rash, fever and general malaise, the patient's general practitioner discontinued the phenindione therapy. The patient had been taking the drug for 28 days and had received a total dosage of 2.83 g. On May 7 the patient was seen by a dermatologist who considered that the rash was probably due to phenindione sensitivity and prescribed cortisone and further antihistamines.

However, the patient continued to experience malaise, had shivering attacks and the rash became more extensive. He was admitted to a nursing home on May 13, when he had a temperature of 103 F. (39.5°C.). The rash was an extensive erythematous maculo-papular one, becoming scaly over the face, neck and arms. His urine output at that time was normal and his blood urea 37 mg./100 ml. Other investigations were:— ESR 23 mm./hour; Hb. 15 g./100 ml.; PCV 46%; MCHC 34%; wbc 12,200/cu. mm.; neutrophils 80%, lymphocytes 12%, eosinophils 5%, and monocytes 3%. Some lymphocytes were noted to have unduly prominent cytoplasm. Total serum protein 6.1 g./100 ml. with normal albumin: globulin ratio. Liver function tests were normal. Serum glutamic-pyruvic transaminase 55 i.u./ml. and alkaline phosphatase 2.83 g.

On May 15 the patient had developed a frank exfoliative dermatitis and was having frequent rigors. His urine output was 500 ml./24 hours in spite of adequate fluid intake.

Investigations now showed:— Hb 11.2 g./100 ml., PCV 36%, wbc 13,500/cu. mm., neutrophils 71%, lymphocytes 13% eosinophils 8%, monocytes 4%, plasma cells 4%. Again unusual lymphocytes with abundant basophilic cytoplasm and large reticulated nuclei were seen. Turk cells were also seen. Serum glutamic-pyruvic transaminase was now 203 i.u./ml.

On May 17 urine output fell to 390 ml./24 hours and blood urea was 160 mg./100 ml. Urine microscopy showed 3 leucocytes per high power field, no red blood cells or organisms. There was moderate albuminuria. Urine urea was 660 mg./100 ml.

On May 18 he was transferred to this Unit. Examination showed an obese, anxious man with widespread exfoliative dermatitis. He was not jaundiced, nor was there any lymphadenopathy. Blood pressure was 130/80 mm. Hg. JVP was raised 1 cm., and the pulse 80/min. and regular. There were bilateral basal medium crepitations in the chest and a sacral pad of oedema. The liver edge was palpable one inch below the right costal margin. There was no splenomegaly.

Investigations.—Hb 9.8 g./100 ml., PCV 38%, wbc 13,600/cu. mm., neutrophils 59%, lymphocytes 26%, eosinophils 11%, monocytes 4%, with again many abnormal mononuclear cells; ESR 68 mm./hour; prothrombin time 19 seconds (control 16 seconds); serum glutamic-pyruvic transaminase 25 units/ml.; serum glutamic-oxaloacetic transaminase 41 units/ml.; blood urea 235 mg./100 ml.; serum sodium 120m Eq./l.; serum potassium 5.1 mEq./l.; serum chloride 90 mEq./l.; total serum bicarbonate 16 mEq./l.; liver function tests normal; serum bilirubin 0.5 mg./100 ml.

Urine examination showed moderate proteinuria with numerous red and white cells. There were no casts. Urine urea concentration 920 mg./100 ml. Urine sodium 26 mEq./l.; potassium 24 mEq./l.; osmolarity 156 mOsm/kg. Plasma osmolarity 256 mOsm/kg. Plain X-rays of the abdomen showed the kidneys to be of normal shape, size and outline. Chest X-ray normal. ECG normal.

Progress
Artificial haemodialysis was performed using the Kolff
Lee and Holden: Phenindione Nephropathy with Recovery

June 1964

FIG. 1.—Urine and serum osmolality values and urinary electrolytes during the onset and recovery of the oliguric renal failure.

FIG. 2.—Blood urea, plasma bicarbonate and urine output during the onset and recovery of the oliguric renal failure.

were no abnormal physical findings. His blood pressure has remained at 140/90 mm Hg.

The results of investigations during these two admissions are shown in Table 1. The hematological findings, particularly the falling ESR and disappearance of the eosinophilia, are consistent with the slow subsidence of a hypersensitivity reaction.

Renal Function

The changes in urine and serum findings throughout the recovery phase are shown in Figs. 1 and 2. It is seen that the osmolality of the urine in the early stages was below that of the plasma, while the urine sodium concentration approached that of the serum and the urine potassium concentration was low. These findings together with the low urine/plasma (U/P) ratio of urea, are characteristic of acute tubular necrosis (Bull, Jockes and Lowe, 1950; Meroney and Rubini, 1959; Merrill, 1956; Sevitt, 1959). With recovery, the urine osmolality rose above that of plasma, the urine sodium concentration fell and the urine potassium concentration rose. The U/P urea ratio rose slowly but there was no longer delay before there was any change in the plasma/urine (P/U) ratio of sodium. The slow approach of the urine electrolytes towards normality and likewise of the U/P urea and P/U sodium ratios long after the onset of the diuretic phase is typical of the recovery phase of acute tubular necrosis (Bull and others, 1950).
Mild to moderate albuminuria persisted until June 6, after which none was found. There was never any glycosuria. Throughout his stay in hospital there were a few red and white cells in his urine but no casts were seen, and no organisms were ever cultured. The urine acidity as measured in immediately voided urine (under paraffin oil) never fell below pH 6.1 when measured between May 23 and 28. A urine acidification test (Wrong and Davies, 1959) performed on July 9 showed a fall in urine pH to 5.6 after the oral administration of ammonium chloride. This showed further improvement by August (Table 1).

The glomerular filtration rate (GFR) using the inulin clearance method by continuous infusion was estimated on May 28. However, during the early phases of tubular dysfunction it is not possible to be sure that the inulin clearance represents glomerular filtration because some of the inulin may be passively reabsorbed across the walls of damaged tubules. Therefore, the early rising GFR values we obtained probably reflect tubular recovery. However, the later GFR values obtained when there was tubular recovery, are likely to be near correct indices of glomerular filtration (Bull and others, 1950). A urea clearance test carried out on June 11 gave a result of 29% (urine flow 15 ml./min.).

The follow-up renal function studies (see Table 1) all showed improvement though they had not reached normality and the evidence is that a very long interval elapses before they do (Lowe, 1954). The greatest deficit is still seen in renal tubular function tests (e.g. maximum concentrating power, urine electrolyte values) and this is in agreement with the findings of the second renal biopsy.

Renal Biopsy was performed on June 14 by the percutaneous method using a Menghini needle. The biopsy report showed that the specimen contained seven glomeruli. There was a small cortical scar present which included a single hyalinated glomerulus. The remaining glomeruli were normal. There was some thickening of the glomerular capsules. No crescents were seen. The epithelium of both the distal and proximal tubules was swollen and granular or, in some instances, necrotic. A few mitotic figures were seen suggesting that some of the epithelium was regenerating (Fig. 3). The tubular basement membranes were difficult to define in some areas, but most of them were intact. The most striking feature was a cellular infiltration, with a predominance of plasma cells, of the interstitial tissue, where there was some early fibrosis. A few eosinophils were seen.

The second renal biopsy, performed on August 14, showed the following. The cellular infiltrate in the interstitial tissue persisted but it now consisted predominantly of lymphocytes. No eosinophils were seen and the plasma cells were fewer than in the previous biopsy. Changes in the tubules were less marked than before but dilated tubules containing hyaline casts were still seen and there was a deposit of calcium in relation to a tubule. The glomerular basement membranes were probably thicker than before and less well defined (Fig. 4).

Table 1: Follow-up Studies

<table>
<thead>
<tr>
<th></th>
<th>July 8-10, 1963</th>
<th>August 13-15, 1963</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESR</td>
<td>50 mm./hour</td>
<td>18 mm./hour</td>
</tr>
<tr>
<td>Hæmatology (Hæmoglobin</td>
<td>8.9 g./100 ml.</td>
<td>10.8 g./100 ml.</td>
</tr>
<tr>
<td>MCHC</td>
<td>33%</td>
<td>34%</td>
</tr>
<tr>
<td>WBC</td>
<td>9,300/cu. mm. Eosinophils 11%</td>
<td>5,900/cu. mm. Eosinophils 0%</td>
</tr>
<tr>
<td>Mid-stream urine specimen</td>
<td>Sterile. No protein cells or casts</td>
<td>Sterile. No protein, occasional casts</td>
</tr>
<tr>
<td>GFR</td>
<td>54 mI./min.</td>
<td>90 mI./min.</td>
</tr>
<tr>
<td>Urea clearance</td>
<td>38%</td>
<td>pH 4.8</td>
</tr>
<tr>
<td>Urine acidification test</td>
<td>pH 5.6</td>
<td>pH 4.8</td>
</tr>
<tr>
<td>Maximum concentration power</td>
<td>510 mOsm./kg.</td>
<td>700 mOsm./kg.</td>
</tr>
<tr>
<td>Maximum diluting power</td>
<td>90 mOsm./kg.</td>
<td>90 mOsm./kg.</td>
</tr>
<tr>
<td>Blood urea</td>
<td>47 mg.%</td>
<td>48 mg.%</td>
</tr>
<tr>
<td>Serum electrolytes</td>
<td>Na 137, Cl 105</td>
<td>Na 138, Cl 108</td>
</tr>
<tr>
<td></td>
<td>K 4.2, bicarbonate 27 mEq./l.</td>
<td>K 4.4, bicarbonate 29 mEq./l.</td>
</tr>
<tr>
<td>Urine concentration</td>
<td>740 mg./100 ml.</td>
<td>1,240 mg./100 ml.</td>
</tr>
<tr>
<td>U/P urea</td>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>Urine sodium</td>
<td>74 mEq./l.</td>
<td>66 mEq./l.</td>
</tr>
<tr>
<td>Urine potassium</td>
<td>17 mEq./l.</td>
<td>29 mEq./l.</td>
</tr>
<tr>
<td>Liver function tests</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Renal biopsy</td>
<td>See text</td>
<td></td>
</tr>
</tbody>
</table>
Discussion

There can be little doubt that this patient's illness was due to phenindione hypersensitivity. He showed features typical of such a reaction: fever, exfoliative dermatitis, raised serum transaminase levels, eosinophilia and atypical mononuclear cells (Perkins, 1962). The patient had not received any other medication likely to have produced such a picture. The fact that the renal complications did not occur until some five weeks after commencement of phenindione seems consistent with the delay noted in previously reported cases (Kirkby, 1954; Barritt and Jordan, 1960; Galea and others, 1963; Postgraduate Medical School of London, 1960). The albuminuria, which was never severe in this patient, only persisted for 21 days although there was still considerable impairment of renal function 53 days later.

There have now been eight cases reported of severe renal complications following phenindione sensitivity (see Table 2). In five of these details of renal histology are available. The features of severe, acute tubular necrosis and reactive inflammation were seen in the case reported by Barritt and Jordan (1960). In the case from the Postgraduate Medical School of London (1960), the histology was that of tubular necrosis with a more diffuse cellular infiltration by plasma cells and lymphocytes. The post mortem histology in the case reported by Galea and others (1963) showed tubular necrosis, interstitial oedema with plasma cell and lymphocyte infiltration and glomerular changes. The latter consisted of thickening of the basement membrane, swelling of the endothelial cells and the presence of neutrophils, plasma cells and occasional eosinophils in the glomerular tufts. The histology in the case reported by Baker and Williams (1963) was again that of patchy tubular necrosis and considerable inflammatory cell infiltration, mainly plasma cells and eosinophils with some foci of neutrophils. These authors stressed that their case was one of interstitial nephritis rather than tubular necrosis and presented biochemical data to support this contention.

This present case is in many respects similar to that of Baker and Williams (1963). The striking finding in the renal biopsy was that in addition to tubular necrosis there was a gross interstitial infiltration of plasma cells and eosinophils,
The biochemical data were characteristic of renal tubular necrosis.

We suggest that in these cases the renal tubular cells predominantly have become sensitized to phenindione and subsequently necrose and that the interstitial infiltration represents the histological picture of a sensitivity reaction. Thus, depending upon the severity and the particular site of this reaction in the kidneys, i.e. whether in tubules, interstitial tissue or glomeruli, one will find varying histological pictures. There may be a mild interstitial nephritis (Burns and Desmond, 1958), a severe interstitial nephritis with some tubular necrosis (Baker and Williams, 1963), or a severe interstitial nephritis, acute tubular necrosis and glomerular involvement as in this case and that recorded by Galea and others (1963). In the case of Baker and Williams the urine investigations were not wholly characteristic of tubular necrosis, agreeing with their renal biopsy, but a minority of tubules may have been involved. It is, therefore, seen that interstitial nephritis and tubular necrosis are part of the same pattern of hypersensitivity reactions in the kidney (Kimmelstiel, 1938; Melnick, 1943).

The reason for the oliguria is speculative. Probably multiple factors operate such as acute interstitial oedema compressing tubules (Peters, 1945) already narrowed by their contained debris (Maluf, 1949; Harrison, Bunting, Ordway and Albrink, 1947) or tubular necrosis allowing back diffusion of water and perhaps reduced glomerular filtration subsequent upon glomerular membrane or capillary changes. Compression of the tubules by interstitial oedema may also cause considerable local anoxia.

It would appear logical to use steroid therapy in such patients since the renal and skin lesions are
due to marked cellular infiltration secondary to a hypersensitivity reaction. In this case the urine output began to increase the day following commencement of prednisone therapy but this may have been coincidence. Baker and Williams also thought it was coincidental that their patient passed urine four hours after his first dose of prednisolone. In the present case it might have been better to continue steroid therapy longer in view of the persistently raised ESR and continuing eosinophilia and the abnormal renal function studies.

The second renal biopsy shows that there will be some permanent renal damage but nevertheless the degree of recovery has been remarkable. It is interesting to note how closely the renal biopsy findings have mimicked those of chronic pyelonephritis. Baker and Williams (1963) have put forward the possibility that some cases of chronic pyelonephritis may take origin in a kidney which has been the site of a hypersensitivity reaction to some unidentified allergen. As they rightly point out, the only solution will be found in the longterm follow-up of cases where hypersensitivity was clearly established.

Phenindione nephropathies seem to occur after prolonged use of the drug and even after it has been stopped. The drug must, therefore, be stopped and steroid therapy begun at the earliest indication that a sensitivity reaction is developing. Since the renal complications are so severe, it would seem expedient to teach patients on phenindione therapy to test their urine daily for albumin with the simple ‘Albustix’ method. They should be instructed to report back to hospital should the test become positive as this is probably the earliest sign of renal involvement. Healing of the renal tissue is slow and steroid therapy may need to be prolonged.

Summary

A 55-year-old male was given post-operative prophylactic phenindione therapy after an open reduction of a fractured left tibia. He developed fever, rigors and skin rashes 28 days after starting the drug. Eleven days later he developed oliguric renal failure and required artificial haemodialysis on two occasions. Follow-up renal function studies have shown a fairly good recovery although some permanent renal damage has occurred. Correlation between morphological and biochemical changes has been discussed. The management of such cases is briefly considered.

We are grateful to Dr. J. Anderson for his advice in preparing this paper. Our thanks are also due to Dr. L. J. Beilin who performed the renal biopsies and to Dr. G. Stirling who reported on them.

REFERENCES

Lowe, K. G. (1952): The Late Prognosis in Acute Tubular Necrosis, Lancet, i, 1086.

Meronen, W. H., and Rubini, M. E. (1959): Kidney Function During Acute Tubular Necrosis; Clinical Studies and a Theory, Metabolism, 8, 1.

Postgraduate Medical School of London (1960): A Case of Pulmonary Hypertension, Brit. med. J., ii, 1219.

Phenindione Nephropathy with Recovery: Studies of Morphology and Renal Function
H. A. Lee and C. E. A. Holden

Postgrad Med J 1964 40: 326-331
doi: 10.1136/pgmj.40.464.326

Updated information and services can be found at:
http://pmj.bmj.com/content/40/464/326.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/